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Abstract

We study matching in a dynamic setting, with applications to the alloca-

tion of public housing. In our model, objects of different types that arrive

stochastically over time must be allocated to agents in a queue. For the case

that the objects share a common priority ordering over agents, we introduce a

strategy-proof mechanism that satisfies certain fairness and efficiency proper-

ties. More generally, we show that the mechanism continues to satisfy these

properties if and only if the priority relations satisfy an acyclicity condition.

We then turn to an application of the framework by evaluating the procedures

that are currently being used to allocate public housing. The estimated welfare

gains from adopting the new mechanism are substantial, exceeding $5,000 per

applicant.

1 Introduction

A typical matching model consists of a set of objects, a list of capacities, a set of agents,

and a list of preferences. This framework applies to problems in which units of each

object are allocated to agents based on a priority ordering. The objective is to design
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allocation procedures that satisfy desirable properties such as strategy-proofness,

efficiency, and stability. For example, the deferred acceptance algorithm introduced

by Gale and Shapley (1962) results in a matching that is stable.

While these procedures may be appropriate for settings in which units are allocated

simultaneously, various real-world problems are dynamic in the sense that units arrive

stochastically. Consider the example of a company with offices in different parts of

the world and relocation opportunities that arise occasionally. For a job opening at a

given location, the company may have preferences over workers based on seniority,

work ability, language skills, etc. Workers have preferences over job locations as well

as the amount of time they spend waiting for a position. A worker may, for instance,

settle on an offer from a less preferred location if she believes that she would have to

wait for too long before the more preferred location becomes available to her.1

As another example, consider the problem of allocating public housing to applicants

on a waiting list. The public housing agency is in charge of allocating rooms in

apartment buildings that vary by location. A room becomes available when the

former tenants vacate the property. Agents have heterogeneous preferences over

apartment buildings, as they may prefer to live closer to their respective workplaces.

Waiting is costly, so each applicant prefers to receive a housing assignment earlier

rather than later. The public housing agency ranks applicants on the waiting list

by priority, and in some cases, priorities may differ across apartment buildings. For

example, some buildings may only be available to high-priority applicants such as the

elderly, disabled, homeless, victims of natural disasters, or victims of domestic abuse;

and buildings that have elevators may give even higher priority to the disabled or

elderly.

The following aspects of these situations are not accounted for by the standard

matching framework described earlier: (i) objects are allocated dynamically as they

arrive over time, (ii) there is uncertainty about the availability of the objects, and

(iii) applicants have preferences over waiting times. We introduce a model that

incorporates these features. Our aim is to design dynamic allocation mechanisms

1Hylland and Zeckhauser (1979) analyze a static version of the“job assignment problem”discussed
in this example.
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that are strategy-proof (i.e., not subject to strategic manipulation) and to explore

whether these mechanisms can satisfy additional fairness and efficiency properties.

We find that the appropriate perspective to take in this dynamic setting is to evaluate

whether these properties can be satisfied ex-ante. Whereas the standard framework is

relevant in settings where objects have static capacities, our model consists of objects

that are characterized by stochastic arrival of units.

When such situations arise in practice, the mechanisms that are employed typically

fail to satisfy desirable properties. Again consider the example of public-housing

allocation. Many public housing agencies use a variation of the following procedure to

allocate rooms. Eligible agents submit an application which includes information that

is used to determine priorities. The applicant with the highest priority is assigned

the first room that becomes available.2 A simple example with two buildings, two

applicants, and two periods demonstrates that this take-it-or-leave-it procedure can

lead to allocations that are inefficient and unstable. Suppose that applicant 1 strictly

prefers to wait for b2 and that applicant 2 prefers b1 to b2. Assume that applicant 1

has high priority and that in period i ∈ {1, 2} a unit in building bi becomes available

with certainty. The take-it-or-leave-it mechanism assigns b1 to applicant 1 and b2

to applicant 2. Since the high priority applicant prefers the assignment of the low

priority applicant, the mechanism is unfair (i.e., it fails to eliminate justified envy).

Additionally, the mechanism is inefficient since applicant 2 also prefers applicant 1’s

allocation.

We propose an alternative allocation mechanism — the Multiple Waitlist Procedure

(MWP) — that essentially modifies the take-it-or-leave-it mechanism by giving

applicants the opportunity to decline an offer and opt to be placed on a First-In/First-

Out (FIFO) waiting list for a different object. We compare the new allocation

mechanism with the procedures currently used by public housing agencies to allocate

rooms to applicants. When objects share a common priority ordering over applicants,

MWP is strategy-proof, efficient, and fair; existing housing allocation mechanisms,

2If she refuses, then she does not receive any allocation and her application is withdrawn or she
is moved to the bottom of the waiting list. Such mechanisms are used by public housing agencies in
Houston, TX and Providence, RI, for example.
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however, fail to satisfy these desirable properties. This motivates our empirical

investigation of public-housing allocation, which uses estimated preferences to quantify

welfare gains from adopting our proposed mechanism.

Although our empirical analysis focuses on the case of common priority orderings,

applications of our framework (including public-housing allocation) may not satisfy

this restriction. In the general case that priority orderings are heterogeneous across

object types, we provide a necessary and sufficient condition for the existence of a

strategy-proof mechanism that satisfies the fairness and efficiency properties. If the

priority relations satisfy an acyclicity condition, then a generalized version of MWP

continues to satisfy strategy-proofness, efficiency, and the elimination of justified

envy. Conversely, if the priority relations fail to satisfy the acyclicity condition,

then there does not exist a strategy-proof mechanism that satisfies these properties

simultaneously. We show that these results continue to hold for a more general class

of allocation mechanisms, namely lottery mechanisms.

Due to the tension between efficiency and the elimination of justified envy in the

absense of acyclicity, we suggest strategy-proof mechanisms that satisfy each of these

properties separately. A simple extension of MWP that ignores the objects’ priority

orderings retains the strategy-proofness and efficiency properties. By modifying MWP

so that the waiting list for a given object respects the object’s priority ordering (instead

of the FIFO property), we obtain a mechanism that satisfies strategy-proofness and

the elimination of justified envy.

A central feature of our matching model is that objects become available over time.3

Related work by Doval (2014) explores dynamically stable matchings in two-sided

markets with deterministic arrivals on one side of the market; Dimakopoulos and Heller

(2014) consider a model of matching with contracts in which object capacities are

deterministically time-dependent; and Gershkov and Moldovanu (2009b) investigate

an allocation setting with deterministic arrival of agents. The present paper, by

contrast, studies allocation problems in which objects arrive stochastically.

3Other models in which dynamic considerations arise due to arrival over time include Ünver
(2010), in which each agent arrives with an object to trade; Gershkov et al. (2014), in which agents
choose when to make themselves available for trade; and Akbarpour et al. (2014), in which agents
arrive and depart stochastically in a networked market.
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Leshno (2012) also attempts to incorporate this type of uncertainty in arrival

by introducing a model in which an object randomly drawn from one of two types

becomes available in each period and must be allocated to an agent on the waiting

list. In his model, the goal of the social planner is simply to maximize the fraction of

agents who are matched with their most-preferred type of object, irrespective of any

particular individual’s waiting time. This is justified by a homogeneity assumption:

agents are identical in terms of waiting costs as well as values for their most-preferred

and least-preferred objects. By contrast, our analysis allows for heterogeneity in

preferences over not only object types but also the amount of time spent waiting

for an allocation. An advantage of our approach is that, by enriching the domain

over which preferences are defined to include the time dimension and by explicitly

addressing priorities in the waiting list, we are able to explore the concepts of strategy-

proofness and stability, neither of which is considered in Leshno (2012). Furthermore,

while Leshno (2012) assumes that a unit becomes available each period with a fixed

probability that the unit is of a given type, we make no assumptions about the

underlying stochastic process that governs the arrival rate of units.

Some recent papers study matching problems that are dynamic in a different

sense. Specifically, their dynamics arise from manipulable priorities (agents can

affect the priorities by acting strategically) or reallocation (the same set of objects

is allocated among the agents in multiple periods). Often motivated by specific

real-world institutions, both of these considerations are generally present in matching

models with overlapping generations.4 These considerations are also relevant in

Abdulkadiroğlu and Loerscher (2007), which studies the problem of allocating a

continuum of homogeneous goods among a set of agents in one period and reallocating

the same goods among the agents in the second period; in their model, priorities in

the second period are higher for agents who opt out in the first period. Damiano

and Lam (2005) analyze stability in repeated matching markets, and Kurino (2009)

4Examples include Dur (2012), which reformulates the school choice problem; Pereyra (2013),
which considers the allocation of teaching positions in Mexico; Kennes et al. (2014a), which studies
day care assignment in Denmark; Kurino (2014), which introduces a dynamic house allocation
problem in the context of on-campus housing for college students; and Kennes et al. (2014b), which
generally analyzes such overlapping generations models in a large market setting.
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generalizes this to a setting in which preferences can change with time. Kadam and

Kotowski (2014) study a model in which matches last for multiple periods and can

be revised over time, allowing for the possibility of intertemporal complementarities

in preferences. In contrast to these approaches, dynamics in our model arise neither

from strategic actions nor from reallocation; we instead consider a situation that is

dynamic in that there is uncertainty about the objects’ availability.

A growing literature in market design uses simulations for welfare analysis, though

much of this work focuses on the school choice problem.5 Along with Abdulkadiroğlu

et al. (2014) and Agarwal and Somaini (2014) (who study school choice in New York

City and Cambridge, respectively) our work is among the first to use preferences

estimated using data from real-world assignment procedures to quantify welfare gains

due to adopting alternative mechanisms. Our counterfactual simulations suggest

that changing existing public-housing allocation mechanisms to MWP would lead to

welfare gains of about $6,400 for each applicant who is assigned public housing.

Glaeser and Luttmer (2003) and Wang (2011) find evidence of the misallocation of

private housing under rent control. The present paper complements these approaches

by exploring the design aspect of public-housing allocation. Empirical work related to

public-housing allocation mechanisms is more limited.6 Van Ommeren and Van der

Vlist (2014) addresses questions related to the efficiency of certain queueing procedures

used for public-housing allocation in Amsterdam by using estimates of marginal

willingness to pay. Geyer and Sieg (2013) develop an equilibrium framework for

estimating household preferences for public housing under supply-side restrictions,

which our paper uses to analyze welfare.

The paper is organized as follows. Section 2 describes the dynamic matching

problem with a discussion of ex-ante and ex-post properties. Section 3 introduces a

mechanism that satisfies various desirable properties, including strategy-proofness,

efficiency, and the elimination of justified envy; explores the possibility of designing

allocation procedures that satisfy these properties for arbitrary priority orderings,

5See, for example, Erdil and Ergin (2008), Dur (2011), Abdulkadiroğlu et al. (2012), Hafalir
et al. (2013), Morrill (2013), and Kesten and Ünver (forthcoming).

6As Geyer and Sieg (2013) note, this is largely because “public housing agencies are not willing
to disclose detailed micro-level data on wait lists.”

6



with an emphasis on the role of acyclicity; and extends the analysis to a more general

class of allocation mechanisms. Section 4 compares the mechanism we propose with

alternative suggestions and provides an application to public-housing allocation by

using estimates from a structural model to evaluate welfare. Section 5 concludes.

2 Model

A dynamic matching problem is a five-tuple 〈A,B,�B,�A, π〉, where A is a finite

set of agents (applicants), B is a finite set of objects (buildings); �B = (�b)b∈B is

a profile of strict priority relations for the buildings in each period; �A = (�a)a∈A
is a profile of applicants’ preference relations over building-time pairs B × R+; and

π = (πb,τ (· |ht))b∈B,t,τ∈N is an arrival process that specifies, conditional on the history

ht, a probability distribution over the number of units (rooms) in building b that

arrive at time τ .7 A history is a map ht : B × {τ ∈ N : τ ≤ t} −→ N that specifies

the number of rooms in each building that have arrived in the previous periods. We

make no specific assumptions about the underlying stochastic process which governs

the arrival of rooms but will find it convenient to denote by Xb(r |ht) the expected

waiting time of the rth room in building b to become available, conditional on the

history ht.

An allocation in period t is a map µt : A −→ (B × N) ∪ {∅}, and an allocation

µ = (µ1, µ2, . . . ) is a collection of allocations in each period. We write µ(a) = 〈b, r〉
and interpret this as applicant a being assigned the rth room that becomes available

in building b.8 A room cannot be unmatched after the period in which it becomes

available.9 Let ηt(·) summarize the history of the allocations at time t as follows:

the number of rooms in building b that have already been assigned is given by

ηt(b) =
∑

a 1{µt(a)=〈b,·〉}. Agent a can be thought of as being on a waiting list for

7We will typically use the terms “buildings,”“rooms,” and “applicants” to refer to the generic
“objects,”“units,” and “agents.” Applicants do not have preferences over rooms in the same building.

8Rooms are not reassigned: if µt(a) 6= ∅, then µt+1(a) = µt(a).
9The assumption that units must be allocated upon arrival and cannot be reallocated in the

future mirrors the corresponding assumptions in Gershkov and Moldovanu (2009b) and Gershkov
and Moldovanu (2009a) for the case of agents arriving stochastically.
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building b if the rth room is not yet available: given the history ht of the arrival

process, the room is expected to arrive in Xb(r |ht) periods.10

We assume that preferences satisfy dynamic consistency and costly waiting con-

ditions.11 These assumptions ensure that the preference relation on B × R+ can

constructed by eliciting an element of R|B|+ . For each building b, this representation

encodes the maximal number of periods that the applicant is willing to wait before

receiving a room in her most-preferred building rather than receiving a room in

building b immediately.

In addition, we assume that applicants are risk-neutral.12 Recall that preferences

are defined over building-time pairs: (b, t) �a (b′, t′) if and only if applicant a prefers to

receive a room in building b in period t over a room in building b′ in period t′. However,

an allocation µt(a) consists not only of a period t and a room r in building b but also an

expected waiting time Xb(r |ht). Our assumptions guarantee that applicants evaluate

assignments based on expected waiting time in the following way: µt(a) = 〈b, r〉 is

preferred to (µ′)t
′
(a) = 〈b′, r′〉 if and only if (b, t+Xb(r |ht)) �a

(
b′, t′ +Xb

(
r′
∣∣ht′)).

A mechanism ϕ is a procedure that uses priority orderings, reported preferences,

and the history to choose an allocation µt in each period t. Let θ′a denote the reported

preferences of applicant a ∈ A, and let θ′−a be the profile of reported preferences of all

applicants except a. An allocation mechanism induces a preference revelation game in

which the set of players is A, the strategy space for player a is the set of preferences

Θ, and each player a ∈ A has true preference θa.

We say that a mechanism ϕ is strategy-proof if deviation from truthful preference

revelation is not profitable along any possible arrival history. Various authors have

emphasized that strategy-proofness is desirable because of fairness (agents who lack

information or sophistication are not at a disadvantage), simplicity (agents can easily

10If Xb(r |ht) = 0, then this ‘waiting list’ is degenerate, so the applicant receives the room
immediately in period t.

11Preferences are dynamically consistent if (b, t) �a (b′, t′) implies (b, t + τ) �a (b′, t′ + τ) for
every τ > 0. Preferences satisfy costly waiting if (b, t) �a (b, t′) is equivalent to t < t′. The
assumptions are realistic for applications such as public-housing allocation but can be relaxed for
our results.

12Our results extend to the case that the social planner knows the applicants’ attitudes towards
risk. However, we maintain the assumption of risk-neutrality throughout for simplicity.
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understand the strategies and the equilibrium), and robustness (the equilibrium does

not depend on beliefs about other agents’ preferences or information).13 Another

justification for strategy-proofness in our dynamic setting is that the social planner

(though not modeled here) may make costly investments based on reported preferences;

for example, a public housing agency may use reported preferences to determine

where to construct a new building.14

Next we define a property that can be interpreted as a form of fairness. An allo-

cation µ eliminates justified envy if an applicant who prefers an alternate assignment

does not have higher priority than the applicant to whom the other room is assigned.15

In our dynamic setting, whether an applicant prefers an alternate assignment depends

on the timing of the allocation and the information available at the time. We say

that an applicant a′ envies another applicant a if (i) a is assigned a room before a′,

and a′ prefers the assignment of a; or (ii) a is assigned a room after a′, and given the

information available at the time when a′ was matched, a′ would have preferred the

room allocated to a.

Definition 1 (elimination of justified envy). Let t∗ = min{t, t′}. If a is assigned

〈ba, ra〉 in period t and a′ is assigned 〈ba′ , ra′〉 in period t′, then

(
ba, t

∗ +Xba

(
ra
∣∣ht∗)) �a′ (ba′ , t′ +Xba′

(
ra′
∣∣ht′)) =⇒ a �ba a′.

An ex-post variation of this no-envy condition would state that an applicant who

prefers another room to her own, given the realized arrival times of their respective

rooms, cannot have higher priority than the applicant to whom the other room is

assigned.

13See Azevedo and Budish (2013) and the references therein for further discussion.
14Abdulkadiroğlu et al. (2009) point out that one of the reasons for the closing of an unpopular

New York City high school in 2006 was lack of demand as determined by reported student preferences
under a strategy-proof mechanism.

15Balinski and Sönmez (1999) introduce this property the context of an allocation problem with
priorities, namely the student placement model, as an analogue of stability. Indeed if we interpret the
priority orderings as the buildings’ “preferences,” then the property requires that no applicant and
building would strictly prefer to be matched with each other rather than their respective matches
from the mechanism.
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An allocation µ is ex-ante efficient if any reallocation µ′ makes some agent strictly

worse off ex-ante. We refer to this as an ex-ante notion of efficiency because agents

only take into account information that is available when they are matched and are

evaluating their expected (rather than realized) arrival times.

Definition 2 (efficiency). For any feasible allocation µ′ 6= µ, there exists some a

(who is assigned 〈ba, ra〉 in period t under µ and is assigned 〈b′a, r′a〉 in period t′ under

µ′) such that
(
ba, t+Xba

(
ra
∣∣ht)) �a (b′a, t∗ +Xb′a

(
r′a
∣∣ht∗)), where t∗ = min{t, t′}.

An alternative notion of efficiency would be ex-post efficiency: any way of re-

distributing rooms that have already arrived (among the agents to whom they are

assigned) would make at least one agent strictly worse off.

We say that a mechanism satisfies a given property if the allocation resulting from

the equilibrium of the induced preference revelation game satisfies that property. Our

analysis focuses on ex-ante properties, as motivated by the following result.

Proposition 1. There does not exist a mechanism that satisfies ex-post efficiency or

ex-post elimination of justified envy.

Proof. We will provide an example to show that it is not possible to design a

mechanism that guarantees ex-post efficiency or ex-post elimination of justified envy

because the realization of the arrival process may be such that neither can possibly

hold.

Consider the following example with three periods (0, 1, and 2), three buildings

(α, β, and γ), and three applicants (A, B, and C).

Assume that each building gives applicant A the highest priority. The applicants’

preferences are given in Table 1.

Let the arrival process be specified as follows. In each period, a room becomes

available with certainty: the room that becomes available in period 0 is in building α;

the room that becomes available in period 1 is equally likely to be in building β or in

building γ; and the room that becomes available in period 2 is equally likely to be in

the building from which no room has become available yet or in building α.

Suppose applicant A is assigned building α in period 0. With probability 1/2,

building β becomes available in period 1. There are two cases to consider. First,
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Table 1: Preferences for applicants A, B, and C

�A �B �C

(β, 0) (α, 0) (α, 0)
(β, 1) (α, 1) (α, 1)
(γ, 0) (γ, 0) (γ, 0)
(α, 0) (α, 2) (α, 2)
(β, 2) (β, 0) (β, 0)
(γ, 1) (γ, 1) (γ, 1)
(α, 1) (β, 1) (β, 1)
(γ, 2) (γ, 2) (γ, 2)
(α, 2) (β, 2) (β, 2)

Note: Preferences for applicants A, B, and C listed in order from most-
preferred to least-preferred. Agent A’s preference can be generated
by the utility function uA(b, t) = f(b)− 3t, where f(α) = 1, f(β) = 6,
f(γ) = 2; applicant B’s and applicant C’s preference can be generated
by the utility function uB(b, t) = uC(b, t) = g(b)− 3t, where g(α) = 8,
g(β) = 1, g(γ) = 3.

suppose β is assigned to applicant B. Then with probability 1/2, building γ arrives

in period 2 and is allocated to applicant C. Notice that the allocation is ex-post

inefficient because applicants A and B prefer to switch: since (β, 1) �A (α, 1) and

(α, 1) �B (β, 1), we see that A and B prefer to leave their assigned buildings to

switch with each other in period 1 (or any subsequent period). Second, suppose

building β is assigned to applicant C when it becomes available in period 1. Then with

probability 1/2, building γ arrives in period 2 and is allocated to applicant B. Again,

the allocation is ex-post inefficient because applicants A and C prefer to switch.

The analysis is similar if applicant B or applicant C is assigned building α in

period 0. Regardless of which applicant is assigned building α in period 0, there is

always some realization of the arrival process in which a Pareto improvement can be

found. The remaining cases of the argument are summarized in Table 2.

In each case, there is justified envy since applicant A (who has the highest priority)

prefers another applicant’s allocation.

Henceforth we omit the term ex-ante with the understanding that all properties
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Table 2: Example used in proof of Proposition 1

Period 0 Period 1 Period 2 Switch Envy

α A β B γ C A, B A, B
α A β C γ B A, C A, C
α B γ A β C A, C A, C
α B γ C α A A, C A, C
α C γ A α B A, B A, B
α C γ B β A A, B A, B

Note: An example in which any assignment rule can lead to a violation of
ex-post efficiency and ex-post elimination of justified envy. Buildings are
denoted α, β, and γ. Agents are denoted A, B, and C, and their preferences
are given in Table 1. Each building gives applicant A the highest priority.
The penultimate column specifies which applicants could trade to obtain a
Pareto improvement in each setting, and the last column specifies whether
some applicant justifiably envies another.

pertaining to the allocation refer to expected arrival times rather than realized arrival

times.

3 Multiple Waitlist Procedure

3.1 Common Priorities

Throughout this section, we consider the case that the buildings share a common

priority ordering, i.e., that there exists �∗ such that �∗=�b for all b ∈ B. We

introduce the Multiple Waitlist Procedure and characterize the matching that results

from this mechanism.

Under MWP, there is a FIFO queue associated with each building. A room that

becomes available in a given building belongs to the applicant at the top of the queue

for that building. If the queue is empty, then the room is offered to the applicant

with the highest priority. The applicant can either accept the offer or opt to be placed

in the queue for the next available room in a different building. Note that if a′ has

higher priority than a, then a′ receives an assignment (i.e., a room or a place on some
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waiting list) before a does.

Step (1, 1). Let the first period in which some room becomes available be given by

t1, and let b1 denote the building in which a room becomes available.16 Denote by

a1,1 the applicant with the highest priority. Offer the room 〈b1, 1〉 to applicant a1,1.

If a1,1 accepts the offer: then set the allocation for a1,1 to be µt1(a1,1) = 〈b1, 1〉.
Proceed to step (2, 1).

Otherwise: a1,1 chooses a building, is placed at the end of a First-In/First-Out

(FIFO) waiting list for that building, and will receive the next unassigned room in

that building when it arrives.17 Proceed to step (1, 2).

Step (i, j). Let the ith period in which some room becomes available be given by

ti, and let bi denote the building in which a room becomes available. Denote by ai,j

the applicant with the highest priority among those who are unmatched. Offer the

room 〈bi, ηti(bi) + 1〉 to applicant ai,j.

If ai,j accepts the offer: then set the allocation for ai,j to be µti(ai,j) = 〈bi, ηti(bi) +

1〉. Proceed to step (i+ 1, 1).

Otherwise: ai,j chooses a building, is placed at the end of a FIFO waiting list for

that building, and will receive the next unassigned room in that building when it

arrives. Proceed to step (i, j + 1).

The following proposition characterizes the major properties of this mechanism.

Proposition 2. MWP satisfies the following properties: (i) strategy-proofness, (ii)

efficiency, and (iii) elimination of justified envy.

Proof. (i) Consider the strategy of applicant a ∈ A. We will show that truthful

preference revelation is weakly dominant. Since the order in which allocations are

16If rooms become available in more than one building, choose one randomly; the outcome of the
procedure will not be affected by this choice.

17In other words, set µt1(a1,1) = 〈b∗, r∗〉, where b∗ is chosen such that
(
b∗, t1 +Xb∗

(
1
∣∣ht1)) �a1,1(

b, t1 +Xb

(
1
∣∣ht1)) for all b. Almost surely this b∗ is unique; in the event that it is not, the procedure

can be extended by temporarily allocating no such b∗ to the applicant and waiting until all but one
of them are matched.
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made depends only on the priority ordering and not on the applicants’ preferences, we

restrict our attention to the step in which applicant a has the highest priority among

those who are unmatched. In this step, we see that a is assigned her most-preferred

room among those that have not yet been assigned. Therefore there is no incentive

to misreport preferences.

(ii) Let the allocation resulting from MWP be given by µ and consider a reallocation

µ′. It suffices to show that there is some applicant who prefers the original allocation

µ. Denote the set of applicants whose allocations differ across µ and µ′ by A′ =

{a : µ′(a) 6= µ(a)}. Let a0 denote the applicant who is assigned first among the

applicants in A′. For any a′ ∈ A′ with a′ 6= a0, the room 〈ba′ , ra′〉 is assigned

at a later step than 〈ba0 , ra0〉 is assigned. Since MWP is strategy-proof by (i),

applicant a0 strictly prefers the original allocation
(
ba0 , t0 + Xba0

(
ra0
∣∣ht0)) over(

ba′ , t0 +Xba′

(
ra′
∣∣ht0)) as desired.

(iii) Suppose applicant a′ has higher priority than another applicant a. According

to MWP, a′ receives an assignment before a does. This implies that 〈ba, ra〉 is available

when 〈ba′ , ra′〉 is assigned. By strategy-proofness, we have that a′ prefers 〈ba′ , ra′〉
to the room assigned to a. In other words, a′ does not envy the lower priority

applicant a.

We have shown that MWP satisfies several desirable properties when there is a

common priority ordering across objects. The next section explores the extent to

which this assumption can be relaxed.

3.2 Heterogeneous priorities

In the general case when priority orderings are not common across objects, the

existence of a strategy-proof mechanism that satisfies efficiency and the elimination of

justified envy depends on whether the priority orderings are “similar.” More precisely,

the existence of such a mechanism depends on whether rankings between applicants

that are nonadjacent in one priority ordering are preserved across all priority orderings.

This property is formalized in the following acyclicity condition.
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Definition 3 (acyclicity). For any a1, a2, a3 ∈ A and b1, b2 ∈ B, we have

a1 �b1 a2 �b1 a3 =⇒ a1 �b2 a3.

In other words, the priority orderings do not contain cycles of the form a1 �b1
a2 �b1 a3 �b2 a1. This condition was first introduced by Ergin (2002) and has since

appeared in various static settings.18 The following result demonstrates that acyclicity

also plays an important role in our dynamic setting.

Proposition 3. There exists a strategy-proof mechanism that satisfies efficiency and

the elimination of justified envy if and only if the priority orderings are acyclic.

Proof. We postpone the proof of sufficiency and show here that if the priority orderings

violate acyclicity, then there does not exist a strategy-proof mechanism that satisfies

both efficiency and the elimination of justified envy.

If �B does not satisfy acyclicity, then there exist buildings α and β such that the

priority orderings form a cycle; that is, there exist applicants A, B, and C such that:

A �α B �α C,

and C �β A.

Let the applicants’ preferences be as given in Table 3. Consider the following

deterministic arrival process: from building α, a room becomes available in period 0

and another room becomes available in period 2; from building β, a room becomes

available in period 1.

Suppose applicant A is assigned building α in period 0. If B is assigned β in

period 1, then the allocation is inefficient because A and B prefer to switch. Likewise,

if C is assigned β in period 1, then the allocation is inefficient because A and C prefer

to switch.

The analysis is similar if applicant B or applicant C is assigned building α in

period 0. Regardless of which applicant is assigned building α in period 0, either there

18Key results in Kojima (2011), Kesten (2006), Dur (2012), and Romero-Medina and Triossi
(2013), for example, depend on variants of acyclicity.
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Table 3: Preferences for applicants A, B, and C

�A �B �C

(β, 0) (α, 0) (β, 0)
(β, 1) (α, 1) (α, 0)
(α, 0) (β, 0) (β, 1)
(β, 2) (α, 2) (α, 1)
(α, 1) (β, 1) (β, 2)
(α, 2) (β, 2) (α, 2)

Note: Preferences for applicants A, B, and C listed in order from most-
preferred to least-preferred. Agent A’s preference can be generated by
the utility function uA(b, t) = f(b)−2t, where f(α) = 1 and f(β) = 4;
applicant B’s preference can be generated by the utility function
uB(b, t) = g(b) − 2t, where g(α) = 4 and g(β) = 1; applicant C’s
preference can be generated by the utility function uC(b, t) = h(b)−2t,
where h(α) = 1 and h(β) = 2.

is a Pareto improvement or some applicant justifiably envies another. The remaining

cases of the argument are summarized in Table 4.

This demonstrates the necessity of the acyclicity condition. Sufficiency will be

shown constructively in the remainder of this section.

We now describe the generalized Multiple Waitlist Procedure for acyclic priority

orderings. The procedure is similar to MWP except that the order of the applicants’

turns may be switched when one applicant prefers a building which gives another

applicant higher priority. In particular, before an applicant can refuse an offer and

join the waiting list for some building, if another applicant has higher priority at that

building, then that applicant’s turn comes first.19

Step (1, 1). Let the first period in which some room becomes available be given by

t1, and let b1 denote the building in which a room becomes available.20 Denote by

19Another way of describing this using language similar to that of Abdulkadiroğlu and Sönmez
(1999) would be “you request my building—I get your turn.”

20If rooms become available in more than one building, choose one randomly; the outcome of the
procedure will not be affected by this choice.
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Table 4: Example used in necessity proof of Proposition 3

Period 0 Period 1 Period 2 Switch Envy

α A β B α C A, B −
α A β C α B A, C −
α B β A α C − C, A
α B β C α A − A, B
α C β A α B − B, C
α C β B α A − A, C

Note: An example in which no assignment rule can satisfy Pareto efficiency
and the elimination of justified envy when priority orderings violate acyclicity.
Buildings are denoted α and β. Agents are denoted A, B, and C, and their
preferences are given in Table 3. Building α ranks applicant A above C, with B
in between; but building β ranks C above A. The penultimate column specifies
which applicants could trade to obtain a Pareto improvement in each setting,
and the last column specifies whether some applicant justifiably envies another.

a1,1 the applicant with the highest priority for building b1. Offer the room 〈b1, 1〉 to

applicant a1,1.

If a1,1 accepts the offer: then set the allocation for a1,1 to be µt1(a1,1) = 〈b1, 1〉.
Proceed to step (2, 1).

Otherwise: a1,1 requests to requests to join the FIFO waiting list of building b̂,

where b̂ is chosen such that
(
b̂, t1 +Xb̂

(
1
∣∣ht1)) �a1,1 (b, t1 +Xb

(
1
∣∣ht1)) for all b 6= b̂.

• If a1,1 has the highest priority at the chosen building b̂, then the request is

accepted, so we set µt1(a1,1) = 〈b̂, 1〉. Proceed to step (1, 2).

• If another applicant â1,1 has higher priority than a1,1 at b̂, then â1,1 chooses

between (i) taking the available room in building b1, (ii) joining the waiting list

for building b̂, and (iii) joining the waiting list for a different building.

– In case (i), set µt1(â1,1) = 〈b1, 1〉 and µt1(a1,1) = 〈b̂, 1〉. Proceed to

step (2, 1).

– In case (ii), set µt1(â1,1) = 〈b̂, 1〉. Repeat step (1, 1).

– In case (iii), place â1,1 at the end of the FIFO waiting list for her chosen
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building,21 and set µt1(a1,1) = 〈b̂, 1〉. Proceed to step (1, 2).

Step (i, j). Let the ith period in which some room becomes available be given by ti,

and let bi denote the building in which a room becomes available. Denote by ai,j the

applicant with the highest priority for building bi among those who are unmatched.

Offer the room 〈bi, ηti(b) + 1〉 to applicant ai,j.

If ai,j accepts the offer: then set the allocation for ai,j to be µti(ai,j) = 〈bi, ηti(bi) +

1〉. Proceed to step (i+ 1, 1).

Otherwise: ai,j requests to requests to join the FIFO waiting list of building b̂,

where b̂ is chosen such that
(
b̂, ti+Xb̂

(
ηti(b̂)+1

∣∣hti)) �ai,j (b, ti+Xb

(
ηti(b)+1

∣∣hti))
for all b 6= b̂.

• If ai,j has the highest priority at the chosen building b̂, then the request is

accepted, so we set µti(ai,j) = 〈b̂, ηti(b̂) + 1〉. Proceed to step (i, j + 1).

• If another applicant âi,j has higher priority than ai,j at b̂, then âi,j chooses

between (i) taking the available room in building bi, (ii) joining the waiting list

for building b̂, and (iii) joining the waiting list for a different building.

– In case (i), set µti(âi,j) = 〈bi, ηti(b) + 1〉 and µti(ai,j) = 〈b̂, ηti(b) + 1〉.
Proceed to step (i+ 1, 1).

– In case (ii), set µti(âi,j) = 〈b̂, ηti(b̂) + 1〉. Repeat step (i, j).

– In case (iii), place âi,j at the end of the FIFO waiting list for her chosen

building, and set µti(ai,j) = 〈b̂, ηti(b̂) + 1〉. Proceed to step (i, j + 1).

The following result characterizes the generalized MWP under acyclic priority

orderings and completes the sufficiency proof for Proposition 3.

21In other words, set µt1(â1,1) = 〈b∗, r∗〉, where b∗ is chosen such that
(
b∗, t1 +Xb∗

(
1
∣∣ht1)) �â1,1(

b, t1 +Xb

(
1
∣∣ht1)) for all b. Almost surely this b∗ is unique; in the event that it is not, the procedure

can be extended by temporarily allocating no such b∗ to the applicant and waiting until all but one
of them are matched.
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Proposition 4. If the priority orderings satisfy acyclicity, then the generalized MWP

satisfies (i) strategy-proofness, (ii) efficiency, and (iii) elimination of justified envy.

Proof. (i) We will show that truthful preference revelation is weakly dominant for

each applicant a ∈ A. By acyclicity, there is at most one applicant â who has

higher priority than a at some buildings but lower priority at the others. During her

turn, applicant a receives her most-preferred room (among those that are available),

unless â prefers the same room and has higher priority for the building. Whether a

receives her most-preferred room among those that are available depends only on the

priorities and the stated preferences of the other applicants; and in the case that the

most-preferred room of a is assigned to â (who has higher priority), a is assigned her

most-preferred room among those that remain. Therefore there is no incentive to

misreport preferences.

(ii) For any reallocation µ′, it suffices to show that there is some applicant

who prefers the original allocation µ resulting from the generalized MWP. Let

a0 denote the applicant who is offered a room first among the set of applicants

A′ = {a : µ′(a) 6= µ(a)} whose allocations differ across µ and µ′. There is at most one

applicant â0 who has higher priority than a0 at some buildings but lower priority at the

others. If such â0 does not exist, or if a prefers a room in a building at which â0 does not

have higher priority, then the proof proceeds as in Proposition 2. Otherwise, â0 receives

her most-preferred room among those that are available at the time of assignment,

which implies that â0 prefers the original allocation
(
bâ0 , t0 + Xbâ0

(
râ0
∣∣ht0)) over(

ba′ , t0 +Xba′

(
ra′
∣∣ht0)) for any a′ ∈ A′ as desired.

(iii) Suppose applicant a′ has higher priority than another applicant a at the

building ba (where a is assigned), and consider the time at which a′ receives an

assignment. If a′ prefers a room in a building at which she has has the highest

priority, then the proof proceeds as in Proposition 2: a′ receives an assignment under

generalized MWP before a does, so 〈ba, ra〉 is available when 〈ba′ , ra′〉 is assigned,

which means that a′ prefers 〈ba′ , ra′〉 to the room assigned to a. Now suppose that

a′ prefers a room in a building at which another applicant â′ has higher priority.22

22As noted earlier, acyclicity implies that there is at most one such applicant.

19



In the case that â′ 6= a, the argument is the same as before because a′ receives an

assignment before a does. Otherwise, we have â′ = a, i.e., that a has higher priority

than a′ at some building. Since a′ prefers a room in a building at which a has higher

priority, a receives an assignment before a′ does. However, 〈ba, ra〉 was available to a′

(since a′ has higher priority at ba by assumption) but not chosen, which implies that

a′ prefers 〈ba′ , ra′〉. In all cases, a′ does not envy the lower priority applicant a.

3.3 Lottery mechanisms

Note that the preceding results are stated for a class of mechanisms that assign a

particular room in a particular building to each applicant. A natural question that

arises is that of whether the characterization holds more generally for a class of

mechanisms that assign a lottery over rooms to each applicant. Under this more

general class of mechanisms, which we refer to as lottery mechanisms, the notion of

elimination of justified envy from definition 1 does not apply since it is unclear what

it means for an applicant to have higher or lower priority for a lottery (as opposed to

a particular building).

To address this issue, we use the notion of strong stability first introduced by Roth

et al. (1993) and adapted by Kesten and Ünver (forthcoming) in the context of school-

choice lotteries.23 We say that an applicant a′ lottery-envies another applicant a if

there is a room r in building b such that a can be assigned to 〈b, r〉 with positive

probability while a′ can be assigned to a less desirable room (for her) than 〈b, r〉 with

positive probability, and we say that this lottery-envy is justified if a′ has higher

priority than a for building b. A lottery mechanism is strongly stable if it eliminates

justified lottery-envy.24

As the following proposition demonstrates, acyclicity remains a necessary and

sufficient condition for the characterization in Proposition 3 extended to lottery

23Kesten and Ünver (forthcoming) refer to this notion as ex-ante stability and provide a more
general formulation that allows for weak priorities.

24Under non-lottery mechanisms, strong stability coincides with the elimination of justified envy
because only a single room is assigned to each agent with positive probability.
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mechanisms.25

Proposition 5. There exists a strategy-proof lottery mechanism that satisfies effi-

ciency and strong stability if and only if the priority orderings are acyclic.

Proof. Necessity can be demonstrated using the same example as in Proposition 3.

Assume �B does not satisfy acyclicity so that there exist buildings α and β, and

applicants A, B, and C such that A �α B �α C and C �β A. The applicants’

preferences are given in Table 3. As before, the arrival process is deterministic: a

room in building α arrives in period 0; a room in building β arrives in period 1; and

another room in building α arrives in period 2.

We begin by determining the assignment of applicant A. If A is assigned a positive

probability of (α, 2), then A would justifiably lottery-envy any applicant who is

assigned a positive probability of (α, 0). If A is assigned a positive probability of

(β, 1), then C must assigned positive probability of either (α, 0) or (α, 2): in the

former case, B has justified lottery-envy towards C; and in the latter case, C has

justified lottery-envy towards A. This leaves us with the conclusion that A must be

assigned (α, 0) with certainty.

Now either B is assigned (α, 2) with certainty or B is assigned a positive probability

of (β, 1): in the former case, the assignment is inefficient since A and C would prefer

to switch; in the latter case, B has justified lottery-envy towards C.

This establishes the necessity of acyclicity. Sufficiency follows from the same

construction as in Proposition 4.

Even when considering the more general class of lottery mechanisms, the presence

or absence of cycles in the priority orderings fully determines whether it is possible for

a strategy-proof mechanism to satisfy efficiency and the elimination of justified envy.

For the case that it is possible to satisfy both conditions, we provide in Proposition 4

a mechanism that does so. In a setting such as public-housing allocation, acyclicity

would be satisfied if there are eligibility restrictions whereby some buildings are only

available to applicants with sufficiently high priority. Additionally, acyclicity can be

25Although the sufficiency direction of Proposition 3 is stronger than that of Proposition 5, the
necessity direction of the latter proposition is stronger.
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satisfied in a system with multiple programs that share a ranking over applicants but

have some discretion on final priorities based on interviews.26

4 Comparison of mechanisms

4.1 Characterization of public-housing allocation mechanisms

The most prominent application in which objects arrive stochastically and must be

assigned to agents dynamically is that of public-housing allocation. This section

begins by evaluating the theoretical properties of mechanisms that are used to assign

public housing and then proceeds to investigate public-housing allocation mechanisms

empirically. Using estimated preferences from a structural model of preferences for

public housing due to Geyer and Sieg (2013), we find that the welfare gains from

changing existing public-housing allocation mechanisms to the Multiple Waitlist

Procedure introduced in Section 3 are substantial.

A Public Housing Authority (PHA) is a state-run or locally-run entity that

administers federal housing assistance programs. There are about 3,300 such agencies

in the United States with approximately 1.2 million households living in public

housing. The US Department of Housing and Urban Development (HUD) authorizes

and funds PHAs and suggests two types of procedures that a PHA may use to allocate

rooms. Under Plan A, the PHA offers a room that becomes available to the applicant

with the highest priority; if the offer is refused, then the applicant is removed or

placed at the bottom of the waiting list. Under Plan B, an applicant who refuses

a room receives another offer, up to a limit of two or three total offers (Devine

et al., 1999). These procedures involve finding the highest priority applicant who is

willing to “accept” the available room rather than “pass.” Letting k denote the upper

bound on the number of rooms that an applicant is permitted to “pass,” we refer

to these procedures as PHA-k mechanisms.27 Another criterion that distinguishes

26See, for example, the allocation procedure in the District of Columbia.
27PHA-0 corresponds to Plan A, the take-it-or-leave-it procedure in which no applicant can “pass”

on an offer without losing their priority; PHA-1 and PHA-2 correspond to Plan B.
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Table 5: Distribution of allocation procedures by size of housing agency

Small Medium Large Extra-large Total

PHAs offering 1 or 2 units 430 114 71 3 618
PHAs offering more than 2 units 446 96 40 7 589
Centralized waiting list 929 179 117 9 1, 234
Non-centralized waiting list 293 70 14 7 384

Note: Data are from the Division of Program Monitoring and Research, US Department of Housing
and Urban Development, 1998. The top frame shows the relationship between the number of units
that may be offered to applicants and housing agency size. The bottom frame shows the relationship
between waiting list method and housing agency size. Small: between 100 and 500 units. Medium:
between 500 and 1,250 units. Large: between 1,250 and 6,600 units. Extra-large: 6,600 units or
more. From the universe of over 3,100 housing agencies, those that operate fewer than 100 units
are excluded, leaving a set of agencies that accounts for 94 percent of all public housing units.

housing allocation mechanisms is the waiting list method. Under a centralized waiting

list system, the applicant with the highest priority can be offered a room in any

building that becomes available. A non-centralized waiting list is either site-specific

or sub-jurisdictional, depending on whether an applicant can only be assigned a room

in a particular building or in a group of buildings. Table 5 shows the number of

housing agencies using each type of procedure described by HUD.

The observation that neither larger nor smaller housing authorities appear to

be systematically associated with procedures that offer more choice provides sug-

gestive evidence that administrative costs are not likely to be a significant barrier

in implementing alternative allocation procedures. The procedure that we propose

(i.e., MWP) can be described in the language used by HUD as offering one unit to a

household on the centralized waiting list and moving it to a site-specific waiting list

if the offer is refused. As shown in Section 3, MWP is strategy-proof and satisfies

fairness and efficiency properties. Although PHA-k may satisfy strategy-proofness,28

the following result illustrates that PHA-k fails to satisfy other desirable properties.

28For centralized waiting lists, it is clear that PHA-k is strategy-proof. However, although there
exist non-manipulable procedures for assigning applicants to non-centralized waiting lists (such as
random assignment), the procedures that are generally used in practice tend not to be strategy-proof.
The public housing agency in New York City, for example, explicitly advises applicants to “select
their first borough choice carefully.”
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Table 6: Preferences for each applicant ai

�a0 �a1 · · · �ak−1
�ak �ak+1

(bk+1, k + 1) (bk, k) · · · (b2, 2) (b1, 1) (b0, 0)
(bk, k) (bk−1, k − 1) · · · (b1, 1) (b0, 0) (bk+1, k + 1)

(bk−1, k − 1) (bk−2, k − 2) · · · (b0, 0) (bk+1, k + 1) (bk, k)
...

...
. . .

...
...

...
(b2, 2) (b1, 1) · · · (b5, 5) (b4, 4) (b3, 3)
(b1, 1) (b0, 0) · · · (b4, 4) (b3, 3) (b2, 2)
(b0, 0) (bk+1, k + 1) · · · (b3, 3) (b2, 2) (b1, 1)

Note: Preferences for applicants {ai}k+1
i=0 listed in order from most-preferred to least-

preferred. The most-preferred room for applicant ai is in building bk−i+1 which arrives
in period k − i+ 1. Each applicant ai prefers the room in building br over the room
in building br−1 for all r 6≡ −i (mod k + 2).

Proposition 6. PHA-k does not satisfy efficiency or the elimination of justified

envy.

Proof. Consider the following example with k + 2 buildings, B = {bi}k+1
i=0 , each with

one room; k + 2 applicants, A = {ai}k+1
i=0 ; and k + 2 periods.

Assume that the buildings’ common priority list ranks applicant ai higher than

applicant ai+1 for all i. The applicants’ preferences are given in Table 6.

Rooms arrive deterministically: in period i, the room in building i becomes

available with certainty.

Applicant a0 refuses k offers and receives a room in building bk, since all rooms

that become available sooner are less desirable. For i = 1, . . . , k − 1, applicant ai

refuses k − i offers; her first-choice room (in building k − i + 1) will be taken by

applicant ai−1, who has higher priority, so applicant ai receives her second-choice room

(in building bk−i). Likewise, applicant ak accepts the offer of a room in building 0,

since ak−1 will accept the room in building 1. This leaves the room in building k + 1

for applicant ak+1. The allocation procedure concludes with each applicant receiving

her second-choice room.

Since it is possible to redistribute the rooms so that each applicant receives her

most-preferred room, the assignment is inefficient. Furthermore, the procedure fails
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to eliminate justified envy since applicant a0 has the highest priority but prefers the

room assigned to applicant ak+1.

Table 5 displays the number of PHAs using the PHA-k mechanism for k ∈ {0, 1}
and for k ≥ 2. Although our construction in Proposition 6 depends on k, in practice

k is typically small.

4.2 Estimation of welfare gains

A question that remains in spite of the theoretical results in the preceding section is

that of whether the selection of an allocation mechanism significantly affects welfare in

real-world applications such as public-housing allocation. We address this question by

using data on a sample of 94 households eligible for public housing in Pittsburgh, PA

from the Survey of Income and Program Participation (SIPP) collected by the US

Census Bureau. The model of household preferences is a standard random utility

specification used in Geyer and Sieg (2013). Our goal is to quantify the welfare gains

from changing the allocation procedure by simulating arrival processes and matchings

under counterfactual mechanisms.

We begin with a brief discussion of the market for public housing in Pittsburgh.

Buildings are classified as “family,” “senior,” and “mixed” communities. The age

distribution of residents within each community is broadly consistent with the classi-

fication, but in practice any applicant can be assigned to any building. A building

can be “large” (more than 100 rooms), “medium” (between 40 and 100 rooms), or

“small” (fewer than 40 rooms). The 34 buildings operated by the Housing Authority

of the City of Pittsburgh (HACP) in 2001 can be placed in six categories based on

classification and size: family large, family medium, family small, mixed, senior large,

and senior small.

The utility of applicant i living in building j at time t is given by

ui,j,t = γj + β log yi,t + δxi + c1{di,t 6=di,t−1} + εi,j,

where γj is a building-specific fixed effect; yi,t denotes net income; xi is a vector
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of demographic characteristics, namely indicators for female, nonwhite, senior, and

children; di,t denotes the residence and c is a moving-cost parameter; and εi,j captures

idiosyncratic tastes for public housing.29 The utility of living in private housing

(j = 0) is normalized to be

ui,0,t = log yi,t + c1{dt 6=dt−1} + εi,0.

Following McFadden (1974), we assume that the idiosyncratic components are inde-

pendently and identically distributed according to a standard type-I extreme-value

distribution.30 Heterogeneity in preferences can be due to various factors: applicants

may prefer to live closer to their respective workplaces, which would allow them to

reduce commuting time and travel costs; unobservable characteristics of children may

lead households to exhibit stronger preferences for units that are located near better

schools; seniors may differ in the extent to which they prefer units that have access

to amenities.

A key insight due to Geyer and Sieg (2013) is that a simple logit demand model

would fail to capture the reality of strong preferences for public housing. Indeed

households that live in private housing exhibit their preferences for public housing

by joining waiting lists, and typical waiting times for an available unit are between

14 and 22 months. Geyer and Sieg (2013) develop an equilibrium framework that

incorporates these supply-side restrictions. They identify the structural parameters

of the utility function by using households’ decisions to exit public housing. Table 7

report estimates of the structural parameters. These estimates suggest that minorities

and female-headed households with children exhibit the strongest preferences for

public housing. The fact that the coefficient β on income is less than one suggests

that a higher income makes public housing less desirable. This is consistent with the

fact that a household residing in public housing typically pays 30% of its income as

29In our empirical analysis, applicants do not have risk-neutral preferences. As footnote 12
mentions, our results do not depend on the risk-neutrality assumption.

30Geyer and Sieg (2013) find that nested logit specifications designed to account for correlation in
unobserved preferences among public housing communities does not increase the likelihood function,
and their statistical tests suggest that the logit specification is reasonable.
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Table 7: Parameter estimates

Parameter Mean Standard error

Income 0.329 (0.028)
Moving cost −3.186 (0.017)
Demographics

Nonwhite, nonsenior 1.222 (0.071)
White, senior 0.209 (0.113)
Nonwhite, senior 1.000 (0.101)
Children −0.315 (0.123)
Female 0.053 (0.061)
Female, senior −0.174 (0.094)
Female, children 0.426 (0.130)

Fixed effects
Family large 4.217 (0.254)
Family medium 4.848 (0.261)
Family small 4.604 (0.277)
Mixed 4.394 (0.260)
Senior large 4.626 (0.263)
Senior small 4.907 (0.258)

Note: Parameter estimates are from the model with supply-side restrictions in Table 10 of Geyer and
Sieg (2013).
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Table 8: Offer probabilities

Building category
Number of
buildings

Empirical transition
probability

Offer
probability

Family large 13 0.0373 0.0708
Family medium 4 0.0258 0.0471
Family small 2 0.0086 0.0159
Mixed 4 0.0538 0.1008
Senior large 3 0.0141 0.0261
Senior small 8 0.0171 0.0311

Note: The empirical transition probability Pr(dt = j | dt−1 = 0) is from the Housing
Authority of the City of Pittsburgh, as reported in Table 3 of Geyer and Sieg (2013).
The offer probability Πj is computed using the empirical transition probabilities and
the parameter estimates in Table 7.

rent each month.

The distributional assumptions on the idiosyncratic component of the utility

function enable us to express the probability Πj′ of receiving an offer to move from

private housing into building j′ in terms of structural parameters and observed data

as

Pr(dt = j′ | dt−1 = 0) =
exp(uj′)

exp(u0) + exp(uj′)
Πj′ ,

where uj denotes the non-idiosyncratic component of the utility of being matched

with building j for the average applicant. Table 8 reports observed transitions from

private housing to public housing and the implied offer probabilities.

Applicants maximize a discounted sum of utilities with a monthly discount factor

of δ = 0.96. This implies an annual discount factor of about 0.61. We assume

that every match lasts for two years (T = 24 months), which is below the average

length of time that a typical household spends in public housing.31 Due to a lack of

applicant-level data on match duration, we use a conservative estimate of two years

to avoid bias due to possible correlation between match duration and unobserved

31Based on the Pittsburgh data as reported by Geyer and Sieg (2013), the average length of time
in public housing is almost seven years.
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characteristics.32 A lower match duration decreases the benefit of being matched with

a more-preferred building, and a lower discount factor increases the cost of waiting

for a more-preferred building. Since we are interested in estimating the welfare gains

from using a mechanism that provides agents more choice at the cost of additional

waiting time, we interpret our estimates as a lower bound on the actual welfare gains.

For an applicant who is assigned to a room in building j′ that becomes available

in period t′, the assigned building as a function of time is given by j(t) = j′1{t′≤t<t+T}.

In other words, the applicant resides in private housing in all periods except for

the two years immediately after moving into public housing. The lifetime utility for

applicant i is thus given by

Ui(j
′, t′) =

∞∑
t=0

δtui,j(t),t

=
ui,0,0
1− δ

+ δt
′
(

(ui,j′,0 − ui,0,0)
1− δT

1− δ
+ c1{j′ 6=0}

(
1 + δT

))
.

Under MWP, since the arrival time of the rth room in a building follows a negative

binomial distribution, we use closed-form expressions to compute the expected utilities

from joining waiting lists. Under the PHA-k mechanisms, we use numerical approxi-

mations to determine applicants’ expected utilities from passing on an offer. Given

these expected utilities, we use the offer probabilities in Table 8 to simulate arrival

processes and determine the allocations that would result under each mechanism.

Our counterfactual simulations provide evidence that the welfare gain from chang-

ing the public-housing allocation mechanism to MWP is substantial. We convert the

difference in utilities between PHA-k and MWP for each applicant by computing

the equivalent variation, i.e., the additional amount of income that the applicant

would have to receive each month when public housing is assigned by the PHA-k

mechanism that would give the applicant the same lifetime utility as the assignment

under MWP. Table 9 reports the average of the present-discounted values of these

32For example, if a household with short-term needs for public housing has larger utility gains
from being matched with its most-preferred building, then using the average match duration may
overstate the benefit of changing the allocation mechanism.
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Table 9: Comparing welfare under MWP and PHA-k mechanisms

Mechanism Mean EV Min EV Max EV EV > 0

PHA-0 $7,543 $4,563 $11,747 66–78%
PHA-1 $5,957 $3,482 $8,647 64–77%
PHA-2 $5,641 $3,369 $8,500 61–80%

Note: This table contains the results of 15 counterfactual simulations. In each
simulation, we compute the average across all applicants of the equivalent variation
(EV) of changing the allocation mechanism to MWP. The second, third, and fourth
columns report the mean and range of present-discounted values (δ = 0.96) across
simulations. The final column provides the range across simulations of the fraction of
applicants who prefer the allocation under MWP.

payments for PHA-0, PHA-1, and PHA-2. Our estimates suggest that a change from

PHA-k to MWP improves the welfare of the average applicant who receives a housing

assignment by an amount that is equivalent to a transfer payment of between $5,600

and $7,600. As discussed earlier, this understates the actual gains from changing

the allocation mechanism due to our assumptions of a low discount rate and a short

match duration. With 1.2 million households living in public housing in the US, the

overall welfare gains from improved matching are substantial.

5 Conclusion

We depart from the usual matching problem with priorities by studying situations

that involve stochastic arrival. Instead of using static capacities, our model captures

uncertainty regarding the availability of objects. In the case of common priority

orderings, we introduce a mechanism (MWP) that is strategy-proof, efficient, and

eliminates justified envy. We then construct a general version of MWP for which the

same properties hold with acyclic priority orderings. These mechanisms do not rely

on any particular stochastic process that governs the arrival rate of units.

We compare these mechanisms with the procedures that public housing agen-

cies currently use (PHA-k mechanisms) to allocate rooms. Our empirical analysis

uses estimated preferences for public housing from a structural model to simulate
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housing assignments under counterfactual allocation mechanisms. Using a sample of

households eligible for public housing in Pittsburgh, we find that the welfare gains

from changing the most commonly used PHA-0 and PHA-1 allocation mechanisms

to MWP are about $6,000 and $7,500 per applicant, respectively. This empirical

finding complements our characterization of the PHA-k mechanisms, which reveals

that these existing procedures may result in inefficiency and justified envy.

Our main characterization result shows that it is impossible to design a mechanism

that satisfies all three properties in general: the existence of such a mechanism

depends on whether the priority orderings satisfy acyclicity. Since acyclicity imposes

a restriction on the priority orderings that are consistent with both efficiency and the

elimination of justified envy, we conclude by suggesting strategy-proof mechanisms

for arbitrary priority orderings that satisfy each of these desirable criteria separately.

A simple variation of MWP that satisfies efficiency would be to choose any

ordering of the applicants and apply MWP as if this ordering were the common

priority ordering. The ordering can be dynamically constructed, e.g., by choosing

at each step the applicant with the highest priority at the building that becomes

available, since only the applicant with the highest priority receives an assignment at

each step. This class of procedures produces efficient allocations: no applicant would

benefit from an alternate allocation since each chooses her most-preferred room at

the time of assignment. However, these procedures do not eliminate justified envy

since an applicant may choose a place on a waiting list for a building at which her

priority is low.

A modified version of MWP can achieve the elimination of justified envy by

constructing the priority ordering dynamically (as described above) but abandoning

the FIFO property of the waiting lists. In particular, consider an alternative in which

an applicant who opts to be placed on a waiting list for a different building receives a

room only after every applicant with higher priority for that building receives some

assignment. If applicant a is assigned a room in building b, then any applicant a′

with higher priority receives either an earlier room in building b or a more-preferred

allocation, so there is no justified envy. However, there can be inefficiencies since

applicants who prefer rooms in buildings at which their priorities are low may benefit
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from switching their assignments.
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Ünver, M. U. (2010): “Dynamic Kidney Exchange,” The Review of Economic

Studies, 77, 372–414. 4

Van Ommeren, J. N. and A. J. Van der Vlist (2014): “Households’ willingness

to pay for public housing,” Mimeo. 6

Wang, S.-Y. (2011): “State Misallocation and Housing Prices: Theory and Evidence

from China,” American Economic Review, 101, 2081–2107. 6

35


	Introduction
	Model
	Multiple Waitlist Procedure
	Common Priorities
	Heterogeneous priorities
	Lottery mechanisms

	Comparison of mechanisms
	Characterization of public-housing allocation mechanisms
	Estimation of welfare gains

	Conclusion

