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INTRODUCTION



The Intergenerational Transmission of Inequality
Preferences

I Parents invest in children — inter vivos, testamentary

I Preferences can take several forms
I Consumption-based: Ut(ct , ct+1).

Arrow (1973), Bernheim and Ray (1987)

I Income-based: U(ct , yt+1).
Becker and Tomes (1979)

I Utility of giving: U(ct , kt).
Banerjee and Newman (1993).

I Child’s Utility-based: U(ct ,Ut+1).
Loury (1981).

How distinct are these?
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The Intergenerational Transmission of Inequality
Transition function

I Parents make some investment, bequest, whatever, in
children . . . , kt . This becomes wealth for children in the
next generation, wt+1.

I Production functions can take several forms
I Neoclassical deterministic or stochastic f , concave and

f (0) = 0.
I Deterministic stepping-stone:

f (k) =


w0 if k < k1,

w1 if k1 ≤ k < k2,
...

...

I Stochastic stepping-stone: w̃ i are ordered by f.o.s.d.
I Becker-Tomes: f (k , s) = s + (1 + r)k ,
I Lumpy neoclassical: f1, . . . , fJ given, for each j there is a kj

s.t. fj(k, s) > fj−1(k , s) for k > kj and all s.
f (k, s) = maxj fj(k , s).
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How the Analysis Works

A dynasty is a sequence of families. Parents at time t were
children at time t − 1, and divide their wealth between their own
consumption and investment in their children. This is in the style
of Becker and Tomes (1979). Perhaps also Loury (1981)?

Children’s wealth at time t + 1 is determined (perhaps with noise)
by their parent’s investment. As parents, they in turn . . . .

I We analyze the family optimization problem.

I We chain the optimization problems together in a dynasty to
analyze the distribution of wealth through time; within
period inequality and the persistence of inequality over time.

I We allow dynasties to compete for social position and
wealth, and examine the effects of this competition on the
inequality questions (maybe).
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How the Analysis Works

A dynasty is a sequence of families. Parents at time t were
children at time t − 1, and divide their wealth between their own
consumption and investment in their children. This is in the style
of Becker and Tomes (1979). Perhaps also Loury (1981)?

Children’s wealth at time t + 1 is determined (perhaps with noise)
by their parent’s investment. As parents, they in turn . . . .

I We analyze the family optimization problem.

I We chain the optimization problems together in a dynasty to
analyze the distribution of wealth through time; within
period inequality and the persistence of inequality over time.

I We allow dynasties to compete for social position and
wealth, and examine the effects of this competition on the
inequality questions (maybe).

Loury is different from the others because his family optimization problem be-
comes recursive dynamic programming problem. Policies that perturb the in-
vestment function perturb utility directly by changing the value function.

Today we won’t discuss Loury.



The family optimization problem

Each family gets utility from their own consumption and their
children’s wealth. It has payoff function U(c(t),w(t + 1)) and
beliefs µ about s(t + 1). Each family solves an optimization
problem. The objective function is

V (c(t), k(t)) ≡ Eµ
{
U
(
c(t), f (k(t), s(t + 1))

)}
.

The optimal policy is the correspondence π : R+ ⇀⇁ R+ given by

π
(
w(t)

)
=
{
k(t) : there is a c(t) ≥ 0 s.t.

(c(t), k(t)) ∈ argmaxc(t),k(t) V (c(t), k(t))

s.t. c(t) + k(t) ≤ wt

c(t), k(t) ≥ 0.
}
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The family optimization problem

Each family gets utility from their own consumption and their
children’s wealth. It has payoff function U(c(t),w(t + 1)) and
beliefs µ about s(t + 1). Each family solves an optimization
problem. The objective function is

V (c(t), k(t)) ≡ Eµ
{
U
(
c(t), f (k(t), s(t + 1))

)}
.

The optimal policy is the correspondence π : R+ ⇀⇁ R+ given by

π
(
w(t)

)
=
{
k(t) : there is a c(t) ≥ 0 s.t.

(c(t), k(t)) ∈ argmaxc(t),k(t) V (c(t), k(t))

s.t. c(t) + k(t) ≤ wt

c(t), k(t) ≥ 0.
}

What do we want to ask about π?

• Does it exist?

• What does it look like?

What will de do with π? How can we use it to build an intergenerational model?

Assumptions are next.



Assumptions

A.1. Utility U(c ,w) is strictly increasing in consumption c and
child’s wealth w .

A.2. Utility is supermodular (U12 ≥ 0 if it is differentiable).

A.3. Utility is strictly concave in consumption c.

A.4. Utility U(c ,w) and wealth f (k , s) are both
upper-semicontinuous.

A.5. Wealth f (k, s) is non-decreasing in investment k for each s.
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Assumptions

A.1. Utility U(c ,w) is strictly increasing in consumption c and
child’s wealth w .

A.2. Utility is supermodular (U12 ≥ 0 if it is differentiable).

A.3. Utility is strictly concave in consumption c .

A.4. Utility U(c ,w) and wealth f (k , s) are both
upper-semicontinuous.

A.5. Wealth f (k , s) is non-decreasing in investment k for each s.

A.4. covers both the stepping-stone and the other production functions listed
above.

Discuss super-modularity.

• We could have assumed u was jointly concave. This leads to
comparative statics through the implicit function theorem. Weird stuff.

• Super-modularity is a different approach to comparative statics.

• Super-modularity does not imply that c and k are complements.
U(c, k) = c + k is super-modular.

• CES utility. For which values of elasticity of substitution σ is u
super-modular?

Back to Questions!



Existence of solutions

Theorem 1. For all w ≥ 0, π(w) 6= ∅. Furthermore, π is
upper-hemicontinuous at every continuity point of f .

Proof Since U is increasing in w , U
(
c , f (k, s)

)
is upper

semi-continuous in (c , k) for every s. So, therefore, is V (c , k), and
maxima of usc functions on compact sets exist. The rest is the
Berge Maximum Theorem.
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Existence of solutions

Theorem 1. For all w ≥ 0, π(w) 6= ∅. Furthermore, π is
upper-hemicontinuous at every continuity point of f .

Proof Since U is increasing in w , U
(
c , f (k , s)

)
is upper

semi-continuous in (c , k) for every s. So, therefore, is V (c , k), and
maxima of usc functions on compact sets exist. The rest is the
Berge Maximum Theorem.

Proof of semi-continuity of the composition: Suppress s since the theorem’s proof
takes it as fixed. Let (cn, kn) → (c, k). We have that lim supn f (kn) ≤ f (k).
Since U is increasing, U(cn, f (kn)) ≤ U(cn, f (k) + ε) for any ε > 0 and all
sufficiently large n. Consequently, and due to the upper semi-continuity of U,

lim sup
n

U(cn, f (kn)) ≤ lim sup
n

U(cn, f (k) + ε) ≤ U(c, f (k) + ε).

Since this holds for all ε > 0, lim supn U(cn, f (kn)) ≤ U(c, f (k)), which was to
be proved.



Comparative statics

What does π look like?

I π is a non-decreasing function except at isolated points.

I At those points it jumps up.

I At a jump point w , the higher point is always in the graph
of π. The lower point may or may not be.

I If the lower point is in the graph, π is uhc at w .
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The evolution of wealth

w(t) k(t)
π

s(t + 1)

w(t + 1)f · · ·

· · ·

generation t

φ
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The deterministic stepping-stone model

In this model there are a finite number of distinct investment
levels. Some of these are self-sustaining, fixed points in that if a
family makes an investment at that level, the return is such that
the child will want to and be able to invest the same amount for
the next generation.

Other investment levels are transitory. Low and high investment
levels may be self-sustaining. Dynasties with enough more wealth
than the low level make mid-level investments, thereby ”stepping
up” through the generations to the high level. Families with more
wealth than the low level, but not enough more, make mid-level
investments, thereby ”stepping down” through the generations to
the low level.

This model may exhibit poverty traps, multiple inescapable
steady-states.
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The deterministic stepping-stone model

0 k1 k2 w2 k3

w

w1 w1

[
W (0)

)[
W (1)

][
W (2)

)[
W (3)

V (w, 0)

V (w − k1, k1)

V (w − k2, k2)

V (w − k3, k3)

V
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The deterministic stepping-stone model

0 k1 k2 w2 k3

w

w1 w1

[
W (0)

)[
W (1)

][
W (2)

)[
W (3)

V (w, 0)

V (w − k1, k1)

V (w − k2, k2)

V (w − k3, k3)

V

Failure of uhc at w1,w3 because the constraint correspondence is not lhc.



Dynamics
Another example

0 w1 w2 w3

w0 w1 w2 w3

I A family with initial wealth less than w1 invests 0. the next
generation has wealth w0.

I A family with initial wealth between w1 and w2 invests k1.
The next generation has wealth w1.

I A family with wealth between w2 and w4 invests k2, and all
subsequent generations have wealth w2 and invest k2.

I A family with wealth w ≥ w4 invest k2 and ha wealth w2.

I Dynastic wealth converges to w2 in finite time.

Dynamics can be arbitrary, with multiple basins of attractions. The
only constraint is that family wealth paths are monotone.
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Dynamics

For n = 0, . . . ,N, define wn and wn as above. Define the intervals
W (0) = [0,w1} and W (i) = [wi ,wi+1)] for i ≤ N, with
wN+1 = +∞, where the last )] is open and the remaining right
delimiters are either open or closed. Assume that no w i is on an
interval boundary. Dynamics can be described by a graph.

Example:

W (0) W (1) W (2) W (3)

w1,w2,w3 ∈W (2). W (0) is a poverty trap. For initial wealth
exceeding w1, wealth converges to w2. This graph is the
deterministic graph of the dynamics.
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Dynamics

Another possibility

w1 w2 w3

0 w0 w1 w2 w3

W (0) W (1) W (2) W (3)

w1,w2 ∈W (1), w3 ∈W (3).
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I What do we learn from this model?

I What’s missing?
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I What do we learn from this model?

I What’s missing?

• Poverty traps

• Interaction across families.

• N.B. This is what both Loury and Becker-Tomes do.



The stochastic stepping-stone
model
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The stochastic stepping-stone model

f (k) =


w̃0 if 0 ≤ k < k1,

w̃1 if k1 ≤ k < k2

etc,

where the w̃n are non-negative random variables which strictly
increase with i in the sense of stochastic dominance.

Let g i (w) denote the density of w̃ i .
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The stochastic stepping-stone model
The optimal policy

Key Fact: π looks just as it did before.

I nondecreasing

I jumps only up

I uhc from the right.
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The stochastic stepping stone model
The Markov process

All selections π̇ from π differ from each other only at the wealths
wi , where both k i−1 and k i are optimal. Each selection describes a
Markov process. For measurable A ⊂W ,

Pπ̇(wt+1 ∈ A|w0, . . . ,wt) =

Pπ̇(wt+1 ∈ A|wt) ≡ Pπ̇(wt ,A) =

∫
A
g π̇(wt)(w) dw .

I A parent in W (i) chooses capital investment k i . The child’s
wealth will be w̃ i , drawn from density g i . Let pij denote the
probability that w̃ i ∈W (j).

pij =

∫
W (j)

g i (w) dw .

We can define social classes by the W (i).
18/35



The stochastic stepping stone model
The Markov process

All selections π̇ from π differ from each other only at the wealths
wi , where both k i−1 and k i are optimal. Each selection describes a
Markov process. For measurable A ⊂W ,

Pπ̇(wt+1 ∈ A|w0, . . . ,wt) =

Pπ̇(wt+1 ∈ A|wt) ≡ Pπ̇(wt ,A) =

∫
A
g π̇(wt)(w) dw .

I A parent in W (i) chooses capital investment k i . The child’s
wealth will be w̃ i , drawn from density g i . Let pij denote the
probability that w̃ i ∈W (j).

pij =

∫
W (j)

g i (w) dw .

We can define social classes by the W (i).

What do we want to know about this Markov process?

• Formal questions:

– Invariant distribution — Existence and uniqueness?
– Convergence rates.

• Substantive questions:

– Inequality — shape of invariant distributions.
– Mobility — convergence rates, transition probabilities.



The stochastic stepping stone model
The Markov process

The Markov processes derived with selections from π are not
“textbook” because of the jumps at the wi . Nonetheless all such
processes have a unique invariant distribution, which does not
depend on the selection. Furthermore, the generation t marginal
distributions of wealth converge weakly to this invariant
distribution from any initial condition.

Key idea: The process which records generation t’s W (i) is
Markov.

Choose a selection π̇ and define the W (i) by correctly assigning
the endpoints to the proper class. Then for wt ∈W (i),

Pr(wt+1 ∈ A|wt) = Pπ̇(wt ,A) =

∫
A
g i (w)dw .
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The stochastic stepping stone model

Therefore,

νt+1(A) =

∫
P(wt ,A) dνt =

∑
k

νt(W (k))

∫
A
gk(w) dw

and ∫
f dνt+1 =

∑
k

νt(W (k))

∫
f (w)gk(w) dw .

νt matters only through the probs
(
(νt(W (1), . . . , νt(W (N))

)
.

Define pij =
∫
W (j) g

i (w) dw , the probability of moving from W (i)

to W (j). Then [pij ] is a Markov matrix, and(
νt+1(W (1), . . . , νt+1(W (N))

)
=
(
νt(W (1), . . . , νt(W (N))

)
· [pij ].
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The stochastic stepping stone model

If [pij ] is irreducible, then it has an invariant probability vector q∗

and the stepping stone process has an invariant distribution ν∗ on
R+ given by

ν∗(A) =
∑
k

q∗k

∫
A
gk(w) dw .

If [pij ] is primitive, then in addition, the sequence
(νt(W (1)), . . . , νt(W (N))) converges to q∗ and so the sequence of
distributions νt converges to ν∗.

Finally, note that the pij do not depend upon the choice of π̇
because the probability of drawing a multi-valued w is 0.
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The stochastic stepping stone model

If [pij ] is irreducible, then it has an invariant probability vector q∗

and the stepping stone process has an invariant distribution ν∗ on
R+ given by

ν∗(A) =
∑
k

q∗k

∫
A
gk(w) dw .

If [pij ] is primitive, then in addition, the sequence
(νt(W (1)), . . . , νt(W (N))) converges to q∗ and so the sequence of
distributions νt converges to ν∗.

Finally, note that the pij do not depend upon the choice of π̇
because the probability of drawing a multi-valued w is 0.

In fact, this shows that νt converges to its limit ν∗ in the variation norm.



The stochastic stepping-stone model

Assumption: [pij ] is irreducible.

Assumption: There is a g i which is strictly positive on some open
interval in W (i).

The purpose of the first assumption is to make the process
irreducible. The second makes it aperiodic.
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The stochastic stepping-stone model

Assumption: [pij ] is irreducible.

Assumption: There is a g i which is strictly positive on some open
interval in W (i).

The purpose of the first assumption is to make the process
irreducible. The second makes it aperiodic.

• Because there are only a finite number of steps, the matrix [p] is finite,
so invariant distributions exist.

• irreducibility makes it unique.

• primitivity guarantees convergence.



Measures of mobility

I A possible measure of mobility is the expected length of time
a dynasty remains in a given class.

E{duration of W (i)} =
1

1− pii
− 1 =

pii
1− pii

.

I The second largest eigenvalue magnitude measures
convergence rates. Bottleneck inequalities.
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Measures of mobility

I A possible measure of mobility is the expected length of time
a dynasty remains in a given class.

E{duration of W (i)} =
1

1− pii
− 1 =

pii
1− pii

.

I The second largest eigenvalue magnitude measures
convergence rates. Bottleneck inequalities.

There is no necessary connection between inequality and mobility. Choose a
transition probability P with invariant distribution q∗. Then q∗ is invariant for
αI + (1− α)P, but duration can be made arbitrarily long by choosing α near 1.

Notice that the basins of attraction are not “special” with respect to persistence.
The g i can be such that the probability of leaving a deterministic attractor is
more than the probability of leaving some other region in its basin of attraction.
But for densities with sufficiently small variance this will not be true.



Poverty Traps

What does a poverty trap look like in a stochastic model?

I The states W (i) of [p] can be partitioned into K + 1 groups:
Group 0 states are transient. Groups 1 through K are
recurrence classes. Once a group is entered, it is never left.
Iff [p] is irreducible, K = 1.

I Some states or groups of states may be meta-stable: They
may be very durable, or they may be entered very frequently.
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Poverty Traps

What does a poverty trap look like in a stochastic model?

I The states W (i) of [p] can be partitioned into K + 1 groups:
Group 0 states are transient. Groups 1 through K are
recurrence classes. Once a group is entered, it is never left.
Iff [p] is irreducible, K = 1.

I Some states or groups of states may be meta-stable: They
may be very durable, or they may be entered very frequently.

• Reducibility is not interesting. An insurmountable barrier??

• Two ways to talk about meta-stability: How easy is it to get stuck, and
where does the process spend most of its time.



Poverty Traps

Natural candidates for poverty traps are the low-wealth stationary
states of the deterministic model. What happens if we add a little
noise?

Stochastic Stability of stationary states.

W (0) W (1) W (2)

The transition matrix for this process is1 0 0
0 0 1
0 0 1

 .

The invariant probability distributions are the convex hull of
(1, 0, 0) and (0, 0, 1).
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Stochastic stability
The idea

Suppose the matrix is perturbed so that with small probability the
state moves to a neighboring interval. The perturbed transition
probability is

1

1 + ε

1 ε 0
ε 0 1
0 ε 1

 .

The invariant measure for this matrix is ν(ε) = (1 + 2ε)−1(ε, ε, 1).
And the limit as ε→ 0 is ν = (0, 0, 1). State 3 is stochastically
stable under this perturbation. No matter how perturbations are
introduced, if they are all of the same order, only state 3 survives
in the limit. ν(i) = limε→0 limT→∞ Pr{s(t) = i |s(0) = j}.

Stochastically stable states are identified by introducing a family of
random perturbations into a deterministic system in a reasonable
way, and finding the limit of invariant distributions as the
perturbations shrink to 0.
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Stochastic stability
The idea

Suppose the matrix is perturbed so that with small probability the
state moves to a neighboring interval. The perturbed transition
probability is

1

1 + ε

1 ε 0
ε 0 1
0 ε 1

 .

The invariant measure for this matrix is ν(ε) = (1 + 2ε)−1(ε, ε, 1).
And the limit as ε→ 0 is ν = (0, 0, 1). State 3 is stochastically
stable under this perturbation. No matter how perturbations are
introduced, if they are all of the same order, only state 3 survives
in the limit. ν(i) = limε→0 limT→∞ Pr{s(t) = i |s(0) = j}.

Stochastically stable states are identified by introducing a family of
random perturbations into a deterministic system in a reasonable
way, and finding the limit of invariant distributions as the
perturbations shrink to 0.

Reversing the order of the double limits gives a very different answer. Notice too
that the answer is independent of j .



Stochastic stability

Define a rich class of examples. Suppose h : R→ R+ is C 2 at its
minimum, 0, and h′′(0) > 0.

I w̃n = max{wn + s, 0}
I s has a density hλ(s) on R, where

hλ(s) = exp{−λh(s)}/Z (λ)

where Z (λ) is a normalizing constant.

For the rest of this section, [p] and everything associated
with it will be parametrized by λ.

I Then

pij(λ) =

∫
s∈{z−w i ,z∈W (j)}

hλ(s) ds ≡
∫ wj+1(λ)

wj (λ)
exp−λhi (s) ds

for any w ∈W (i). (Take W (0) = (−∞,w1(λ)].)
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Stochastic stability

Define a rich class of examples. Suppose h : R→ R+ is C 2 at its
minimum, 0, and h′′(0) > 0.

I w̃n = max{wn + s, 0}
I s has a density hλ(s) on R, where

hλ(s) = exp{−λh(s)}/Z (λ)

where Z (λ) is a normalizing constant.

For the rest of this section, [p] and everything associated
with it will be parametrized by λ.

I Then

pij(λ) =

∫
s∈{z−w i ,z∈W (j)}

hλ(s) ds ≡
∫ wj+1(λ)

wj (λ)
exp−λhi (s) ds

for any w ∈W (i). (Take W (0) = (−∞,w1(λ)].)

Z(λ) ≈
√

2π/λh′′(0)

Recall hi (s) = h(s − w i ).

Note that W (i) now depends upon λ.



Stochastic stability

As λ→∞, the distribution of s converges weakly to point mass
at 0. The boundaries wi are functions of this distribution. Write
wi (λ).

A.6. The boundaries wi (λ) converge to the deterministic
boundaries as λ→∞.

A sufficient condition for this is that U is continuous.

Write wi (λ) and note that for each i , limλ→∞ wi (λ)→ wi .
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Stochastic Stability

Denote by νλ the invariant distribution of [p(λ)].

Theorem. For every state W (i), limλ→∞ νλ(W (i)) = 0 or 1. If the
limit is 1, then W (i) is a stationary point of the deterministic
dynamic. Typically there will be only one state W (i) with limit 1.
The stochastically stable attractor is unique.

The stochastically stable attractor is not determined by the graph.
That is, there are graphs for which the identity of the unique
stochastically stable state depends on the shape of h.
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w0 w1 w2 w3 w4

w0 w1 w2 w3 w4

W (0) W (1) W (2) W (3) W (4)
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Stochastic stability

w0 w1 w2 w3 w4

w0 w1 w2 w3 w4

00.511.52

0.25

0.2

0.15

0.1

0.05

W (0)

W (2)

W (1)

W (4)

σ2

pr

00.511.52
0

0.2

0.4

0.6

0.8

1

W (3)

σ2

pr

Invariant distribution probabilities, h(x) = x2 and λ = 1/2σ2.
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Stochastic stability

w0 w1 w2 w3 w4

w0 w1 w2 w3 w4

00.511.52

0.25

0.2

0.15

0.1

0.05

W (0)

W (2)

W (1)

W (4)

σ2

pr

00.511.52
0

0.2

0.4

0.6

0.8

1

W (3)

σ2

pr

Invariant distribution probabilities, h(x) = x2 and λ = 1/2σ2.

It’s so nice when computations are consistent with a theorem.



Stochastic Stability

What do we learn?

I The deterministic model does not give a good description of
long-run behavior of the model with even a modest amount
of noise.

I lim
T→∞

1

T
#
{
t : wt ∈W (i)

}
= νλ

(
W (i)

)
.

This does not capture poverty-trap behavior.

I Computation shows that the limit picture sheds light on the
finite-λ picture.
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Poverty Traps

I In light of this analysis, what should we think of poverty
traps in deterministic models?

I Typically, the odds ratio νλ
(
W (i)

)
/νλ
(
W (j)

)
converges to

either 0 or ∞. W (i) is more stable than W (j) iff
νλ
(
W (i)

)
/νλ
(
W (j)

)
=∞. States can be ordered by the

“more stable than” relation. This can give a coarse
description of traps.
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Measuring Mobility

Suggested definition. How long does it take for a generation with
wealth w0 to have descendents that “look like” others from
dynasties with different initial conditions? Define πt(w0).

Worst-case time-t l1-distance
from the invariant distribution.
The Ehrenfest Urn with 150
balls.

I Bad initial behavior

I Onset of the “exponential
regime” described by the
second largest eigenvalue
modulus.

Theorem: If ||πt − π∗||1 ≤ 1 then convergence from here on out is
exponential.
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Measuring Mobility

Suggested definition. How long does it take for a generation with
wealth w0 to have descendents that “look like” others from
dynasties with different initial conditions? Define πt(w0).

Worst-case time-t l1-distance
from the invariant distribution.
The Ehrenfest Urn with 150
balls.

I Bad initial behavior

I Onset of the “exponential
regime” described by the
second largest eigenvalue
modulus.

Theorem: If ||πt − π∗||1 ≤ 1 then convergence from here on out is
exponential.

• Two points:

– Expected pic on left vs weird possibility on the right.
– Why l1x is the right norm.

• Eigenvalues are 1, λ2, . . . , λN ordered by decreasing modulus. Slope of
the bottom piece is 1− |λ2|.



References I

Arrow, Kenneth. 1973. “Rawls Principle of Just Saving.” Swedish
Journal of Economics 75: 323–335.

Banerjee, Abhijit V. and Andrew F. Newman. 1993. ”Occupational
Choice and the Process of Development.” Journal of Political
Economy 101 (2): 274–298.

Becker, Gary and Nigel Tomes. 1979. “An equilibrium theory of
the distribution of income and intergenerational mobility.”
Journal of Political Economy 87 (6): 1153–1189.

Bernheim, B. Douglas and Debraj Ray. 1987. “Economic growth
with intergenerational altruism.” Review of Economic Studies
54: 227–43.

Loury, Glenn. 1981. “Intergenerational transfers and the
distribution of earnings.” Econometrica 49 (4): 843–67.

35/35


	References

