Life in Shackles?

The Quantitative Implications of Reforming the Educational Financing System

B. Heijdra, L. Reijnders and F. Kindermann
Motivation

- Obtaining college education requires large investment of both time and money.

- To facilitate access to education, most governments have instituted education financing systems.

- System design varies substantially across countries
 - **US**: Mortgage Loans
 - **Australia**: Income Contingent Loans
 - **Netherlands**: Basic Grants financed from tax money
Motivation

The problem of the US mortgage loan system:

- It guarantees wide access to tertiary education.
- **BUT:** College students may end up with lots of study debt.
- Might be especially painful when a graduate is *unlucky in the labor market.*
“... student loan systems [...] are often badly designed for an extended period of high unemployment. In contrast to the housing crash the risk from student debt is not of a sudden explosion in losses but of a gradual financial suffocation. The pressure needs to be eased.”

The Economist (October 29th, 2011)
Motivation
Potential Solutions

- Theoretical literature promotes income dependent financing schemes to insure educational risks.

- Private arrangements:
 - Students sell a share of their future earnings to investors.
 - Equity investment idea dates back to Friedman.
 - Comes with some complications: default, costly income verification, ...

- Public arrangements:
 - Income dependent education financing system.
 - Government has the ability to tax college graduates.
In This Paper

- Focus on public arrangements.
- Quantitative analysis of different financing schemes.
- Start from mortgage loans system in the US.
- Reform system so that grants to students are financed from
 - comprehensive taxes or
 - graduate taxes or
 - degree-specific taxes.
Move to graduate or degree-specific tax scheme increases aggregate welfare.

Risk-sharing benefits and positive education incentives outweigh labor-supply distortions.

Reforms lead to considerable transitional dynamics.
Related Literature

- **Theoretical contributions:**
 - Garcia-Penalosa/Wälde (2000)
 - Jacobs/van Wijnbergen (2007)
 - Cigno/Luporini (2009)
 - Del Rey/Racionero (2010)
 - Lochner/Monge-Naranjo (2011)
 - Eckert/Zilcha (2012)

- **Education Subsidies and Incomplete Markets:**
 - Akyol/Athreya (2005)
 - Ionescu (2009)
 - Krueger/Ludwig (2013)
 - Abbott/Gallipoli/Meghir/Violante (2013)
A Quantitative Model with Education Decisions
The Overlapping Generations Framework

- Overlapping generations of heterogeneous individuals.

- Demographics:
 - lifespan is certain
 - population grows at constant rate

- Households:
 - choose how many years to stay in higher education
 - choose labor supply in the working phase
 - create human capital through learning-by-doing
 - decide about consumption and savings
Components of individual heterogeneity/risk

- **Educational ability** $\theta \in [0, 1]$.
- **On-the-job learning ability**
 - $\gamma \in \{\gamma_l, \gamma_h\}$
 - correlated with θ
- **Individual labor productivity**
 - $\eta \in \{0, \eta_l, 1, \eta_h\}$
 - evolves stochastically over life cycle with autocorrelation
The Life Cycle

Exogenous: birth, majority

Endogenous: age 0, M, M + E, \(\bar{U} + 1 \)

Stochastic: \(\theta \)

End ad education, labor supply
The Life Cycle

endogenous

exogenous

stochastic

age

0

M

M + E

education

working phase

labour supply

birth

majority

end education

death

θ

η

γ

0

M

M + E

education

working phase

labour supply

birth

majority

end education

death

θ

η

γ

0

M

M + E

education

working phase

labour supply

birth

majority

end education

death

θ

η

γ

0

M

M + E

education

working phase

labour supply

birth

majority

end education

death

θ

η

γ

0
The Life Cycle
The Life Cycle

endogenous

stochastic

exogenous

birth majority end education labor supply ℓ

age 0 M M + E $\bar{U} + 1$

education working phase
Individual Decision Making
Maximization Problem of a Worker

\[V_{u,t}(E, \gamma, a, h, \eta) = \max_{c,l,a^{+} \geq 0,h^{+}} \left\{ \left[c^{\varepsilon}(1 - l)^{1-\varepsilon} \right]^{1-1/\sigma} \right. \]

\[+ \beta \left[\mathbb{E}_{\eta^{+}|\eta,E} \left[V_{u+1,t+1}(E, \gamma, a^{+}, h^{+}, \eta^{+})^{1-\zeta} \right] \right]^{\frac{1-1/\sigma}{1-\zeta}} \left. \right\}^{\frac{1}{1-1/\sigma}} \]
Individual Decision Making
Maximization Problem of a Worker

\[V_{u,t}(E, \gamma, a, h, \eta) = \max_{c,l,a^+, h^+} \left\{ \left[c^\varepsilon (1 - l)^{1-\varepsilon} \right]^{1-1/\sigma} \right\} \]

\[+ \beta \left[E_{\eta^+ | \eta, E} \left[V_{u+1,t+1}(E, \gamma, a^+, h^+, \eta^+)^{1-\zeta} \right] \right]^{\frac{1-1/\sigma}{1-\zeta}} \]

- Budget constraint with \(y = \omega_t \cdot \eta \cdot h \cdot l \)

\[a^+ = [1 + (1 - \tau_t^r) r_t] a + (1 - \tau_t^\omega) y + \nu_{u,t} 1_{\{\eta = 0\}} \]

\[- Y_{u,t}(E, y) - (1 + \tau_t^c) c. \]

- Human capital accumulation

\[h^+ = (1 - \delta_u^h)[1 + \gamma l^\alpha] h. \]
Individual Decision Making

Maximization Problem of a Student

\[S(\theta) = \max_{E \in \{0, 2, 4, 6\}} \left[\sum_{s=t}^{t+E-1} \beta^{s-t} \left[(c_s) \varepsilon (1 - e)^{1-\varepsilon} \right]^{1-1/\sigma} \right] \]

\[+ \beta^E \left[\mathbb{E}_{\gamma | \theta} \left[V_{M+E, t+E}(E, \gamma, 0, h, 1)^{1-\zeta} \right] \right]^{\frac{1-1/\sigma}{1-\zeta}} \]
Individual Decision Making
Maximization Problem of a Student

\[S(\theta) = \max_{E \in \{0,2,4,6\}} \left[\sum_{s=t}^{t+E-1} \beta^{s-t} \left[(c_s) e(1-e)^{1-\varepsilon} \right]^{1-1/\sigma} \right. \]

\[+ \beta^E \left[\mathbb{E}_{\gamma | \theta} \left[V_{M+E,t+E}(E, \gamma, 0, h, 1)^{1-\zeta} \right] \right]^{1-1/\sigma} \]

- **Budget constraint**

\[c_t = \frac{q_t - f_t}{1 + \tau_t^c}. \]

- **Human capital accumulation**

\[h = \Gamma(\theta, E) = 1 + \zeta_1 \theta E - \zeta_2 [1 - \theta] E^2. \]
Subsidized Mortgage Loan System:

- Each student has to pay back her individual loan.
- $Y_{u,t}(E, w_t, \eta, h_l)$ is calculated such that the PV of repayments equals the PV of loan uptake.
- Interest payments are deductible from income taxes.

Government taxes consumption and income to finance

- public consumption
- unemployment benefits

Firms produce in competitive markets using capital and labor with Cobb-Douglas technology.
Calibration
Calibration Strategy

- Two step calibration procedure:
 1. Take some parameters from literature or directly from data.
 2. Calibrate remaining parameters to match important target moments from the data.
Calibration Strategy
Excerpt of Step 1

- Risk aversion of $\zeta = 4$.
- Autocorrelation of productivity shocks $\rho_\eta = 0.821$.
- Unemployment probabilities by education from CPS.
- Annual student loan uptake to average income 0.238
- Grace period before loan repayment of 4 years.
- Total repayment time of 15 years.
Calibration Strategy

Excerpt of Step 2

- Capital to output ratio.
- Consumption and income tax revenue.
- Education composition of the population from CPS.
- Average labor productivity profiles by education.
- Old-age labor force participation.
- Variance of income growth rates.
- Variance of log labor earnings by age.
Model Fit

Education Decisions and Skill Distribution

[Graph showing the distribution of talent and education decisions as a function of educational talent θ.]
Education Composition of Workforce

<table>
<thead>
<tr>
<th>Share with</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 years</td>
<td>52.02</td>
<td>53.20</td>
</tr>
<tr>
<td>2 years</td>
<td>13.12</td>
<td>11.12</td>
</tr>
<tr>
<td>4 years</td>
<td>21.81</td>
<td>22.89</td>
</tr>
<tr>
<td>6 years</td>
<td>13.05</td>
<td>12.79</td>
</tr>
</tbody>
</table>
Model Fit

Average Labor Productivity by Education

Graph showing the average labor productivity by education over age. The graph compares mean productivity between individuals with no college and some college education. The productivity increases with age for both groups, peaking at around 50 years, and then decreases. The line for those with some college education is generally higher than those with no college education.
Model Fit

Variance of Log Labor Earnings

![Graph showing the variance of log labor earnings vs age. The y-axis represents variance of log, and the x-axis represents age. The graph shows an increasing trend from age 30 to age 60, with a slight decrease after age 60.](image-url)
Initial Equilibrium

Labor Hours
Initial Equilibrium

Labor Income

Mean by Education Level

Age

E = 0
E = 2
E = 4
E = 6
Reforming the Education Financing System
The Though Experiment

- We start from the equilibrium described above.

- The government introduces one of three education financing systems, which finance the sum of grants to students on a pay-as-you-go basis by means of
The Though Experiment

- We start from the equilibrium described above.

- The government introduces one of three education financing systems, which finance the sum of grants to students on a pay-as-you-go basis by means of
 - comprehensive taxes (CT):
 - general taxes on labor earnings
The Though Experiment

- We start from the equilibrium described above.

- The government introduces one of three education financing systems, which finance the sum of grants to students on a pay-as-you-go basis by means of

 - comprehensive taxes (CT):
 - general taxes on labor earnings

 - graduate taxes (GT):
 - a tax on labor earnings of household with education $E > 0$
The Though Experiment

- We start from the equilibrium described above.

- The government introduces one of three education financing systems, which finance the sum of grants to students on a pay-as-you-go basis by means of
 - comprehensive taxes (CT):
 general taxes on labor earnings
 - graduate taxes (GT):
 a tax on labor earnings of household with education $E > 0$
 - degree-specific taxes (DT):
 a tax on labor earnings that depends on the specific education degree a household has obtained.
The Though Experiment

- We start from the equilibrium described above.

- The government introduces one of three education financing systems, which finance the sum of grants to students on a pay-as-you-go basis by means of
 - **comprehensive** taxes (CT): general taxes on labor earnings
 - **graduate** taxes (GT): a tax on labor earnings of household with education $E > 0$
 - **degree-specific** taxes (DT): a tax on labor earnings that depends on the specific education degree a household has obtained.

- We calculate a full transition path.
Long-run Simulation Results
Long-Run Taxes and Education Decisions

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th></th>
<th>GT</th>
<th></th>
<th>DT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ^e</td>
<td>Distr.</td>
<td>τ^e</td>
<td>Distr.</td>
<td>τ^e</td>
<td>Distr.</td>
</tr>
<tr>
<td>$E = 0$</td>
<td>1.56</td>
<td>-11.12</td>
<td>0.00</td>
<td>0.53</td>
<td>0.00</td>
<td>-5.79</td>
</tr>
<tr>
<td>$E = 2$</td>
<td>1.56</td>
<td>-0.28</td>
<td>2.37</td>
<td>-12.45</td>
<td>1.01</td>
<td>0.65</td>
</tr>
<tr>
<td>$E = 4$</td>
<td>1.56</td>
<td>1.79</td>
<td>2.37</td>
<td>1.29</td>
<td>1.93</td>
<td>3.63</td>
</tr>
<tr>
<td>$E = 6$</td>
<td>1.56</td>
<td>9.61</td>
<td>2.37</td>
<td>10.63</td>
<td>2.67</td>
<td>1.51</td>
</tr>
</tbody>
</table>
Long-Run Macroeconomics Effects

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>GT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroeconomic quantities (in %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effective labor</td>
<td>0.46</td>
<td>0.23</td>
<td>−0.40</td>
</tr>
<tr>
<td>Capital stock</td>
<td>3.00</td>
<td>2.72</td>
<td>1.89</td>
</tr>
<tr>
<td>Output</td>
<td>1.03</td>
<td>0.79</td>
<td>0.12</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.53</td>
<td>0.30</td>
<td>−0.45</td>
</tr>
<tr>
<td>Factor prices and taxes (in %p)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage</td>
<td>0.57</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>Interest rate</td>
<td>−0.15</td>
<td>−0.14</td>
<td>−0.13</td>
</tr>
<tr>
<td>Income tax rate</td>
<td>−0.21</td>
<td>−0.14</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Transitional Dynamics
Transitional Dynamics

Effective Labor

- Comprehensive Tax
- Graduate Tax
- Degree Tax

Change in %

Time

Graph showing the change in effective labor over time for Comprehensive Tax, Graduate Tax, and Degree Tax.
Transitional Dynamics

Capital

Time

Change in %

Comprehensive Tax
Graduate Tax
Degree Tax
Transitional Dynamics

Consumption

Change in %

Comprehensive Tax
Graduate Tax
Degree Tax

Time
Welfare Analysis
The Concept of Welfare

- We measure welfare by means of compensating transfers.
- One transfer per cohort.
- Calculated such that cohort would be indifferent (in ex ante utility terms) between living in initial equilibrium and reform system.
- Negative of transfer indicates welfare effect.
- We relate transfer levels to initial equilibrium consumption.
Compensating Transfers

- Consumption Compensating Variation
- Comprehensive Tax
- Graduate Tax
- Degree Tax

Cohort

Graph showing the consumption compensating variation for different tax types over time.
Aggregate Welfare

- Transfers can be easily *aggregated across generations*.
- Initial equilibrium interest rate to discount future.
- Converted into annuity stream.
- Again related to aggregate consumption.
Aggregate Welfare

- Transfers can be easily aggregated across generations.
- Initial equilibrium interest rate to discount future.
- Converted into annuity stream.
- Again related to aggregate consumption.

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>GT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>−0.29</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Decomposing the Welfare Effect
A Decomposition

Reforming the education financing system leads to

- (+) Risk-sharing opportunity
- (−) Regressive redistribution
- (−) Work incentives
- (−/+) Education incentives
- (+) General equilibrium effects
A Decomposition

- Reforming the education financing system leads to
 - (+) Risk-sharing opportunity
 - (−) Regressive redistribution
 - (−) Work incentives
 - (−/+) Education incentives
 - (+) General equilibrium effects

- Disentangle effects by using different specifications:
 - Small open economy
 - Fixed education choice
 - Repayments income contingent but perceived as lump-sum
Decomposition Results

<table>
<thead>
<tr>
<th>Effect</th>
<th>CT</th>
<th>GT</th>
<th>DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redistribution effect</td>
<td>−0.17</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>Work incentive effect</td>
<td>−0.19</td>
<td>−0.18</td>
<td>−0.17</td>
</tr>
<tr>
<td>Educational incentive effect</td>
<td>0.04</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>General equilibrium effect</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>−0.29</td>
<td>0.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Hybrid Systems

Aggregate Welfare Effect

- Comprehensive Tax
- Graduate Tax
- Degree Tax

Share Financed from Taxes
Conclusion

- Reforming education loan system can generate aggregate welfare gain.

- Risk-sharing benefits and education incentives can outweigh losses from labor supply distortions.

- System needs to be designed in a suitable way, otherwise regressive redistribution.

- Reforming the education financing system comes a transitional costs.

- Short-run generations can (in principle) be compensated.
Further Investigation

- Progressive taxes.
- Basic allowances in income contingent system.
- Quality of schools and price setting behavior.