The Marriage Market, Labor Supply and Education Choice

Human Capital Formation and Family Economics Workshop

P.A. Chiappori, M. Costa Dias, C. Meghir

Columbia University, UCL and IFS, Yale University

Chicago, October 28, 2016
Two fundamental, Beckerian insights:
Two fundamental, Beckerian insights:

- Notion of Human Capital
Human Capital and Matching: a Beckerian Perspective

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

Matching on human capital: assortative?
→ not obvious; depends on the nature of marital gains.
Human Capital and Matching: a Beckerian Perspective

Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

Matching on human capital: assortative?
→ not obvious; depends on the nature of marital gains.

- Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
Human Capital and Matching: a Beckerian Perspective

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

- Matching on human capital: assortative?
 → not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

Matching on human capital: assortative?

→ not obvious; depends on the nature of marital gains.

- Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
- Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

Matching on human capital: assortative?
→ not obvious; depends on the nature of marital gains.

- Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
- Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility
 → notion of ‘background risk’ ...
Human Capital and Matching: a Beckerian Perspective

- Two fundamental, Beckerian insights:
 - Notion of Human Capital
 - Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

- Matching on human capital: assortative?
 → not obvious; depends on the nature of marital gains.
 - Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
 - Risk sharing is still another dimension:
 - More HC means both higher expected wages \textit{and} more wage volatility
 → notion of ‘background risk’ ...
 ... especially since PAM depends on ‘supermodularity’
Two fundamental, Beckerian insights:

- Notion of Human Capital
- Matching as an equilibrium phenomenon:
 - assortative?
 - endogenous intra-couple allocations

Matching on human capital: assortative?

→ not obvious; depends on the nature of marital gains.

- Public goods (under TU) tend to generate PAM (however, domestic production may push in the opposite direction, especially if specialization)
- Risk sharing is still another dimension:
 - More HC means both higher expected wages and more wage volatility
 - → notion of ‘background risk’ ...
 - ... especially since PAM depends on ‘supermodularity’

This paper: investigates this aspect in an explicit, theory-based model
A labor supply perspective

- Standard LS models:
A labor supply perspective

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s

- Collective: joint determination, two utilities plus decision process

- But in both cases: Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- Here: Recognize endogeneity of both pre-marital HC investment and choice of a spouse

- In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)

- Crucial importance in analyzing long term consequences of policy reforms: Will they affect matching patterns? Will they affect HC investments?

- This paper: investigates these aspects
A labor supply perspective

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- Human capital is exogenous
- Identity (and HC) of the spouse exogenous

- Here: Recognize endogeneity of both pre-marital HC investment and choice of a spouse
- In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)
- Crucial importance in analyzing long term consequences of policy reforms: Will they affect matching patterns? Will they affect HC investments?
- This paper: investigates these aspects

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
A labor supply perspective

- **Standard LS models:**
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- But in both cases:
A labor supply perspective

- **Standard LS models:**
 - **Unitary:** one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - **Collective:** joint determination, two utilities plus decision process

- **But in both cases:**
 - Human capital is exogenous
A labor supply perspective

- **Standard LS models:**
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- **But in both cases:**
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009) and crucial importance in analyzing long term consequences of policy reforms: Will they affect matching patterns? Will they affect HC investments? This paper: investigates these aspects.
A labor supply perspective

- **Standard LS models:**
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- **But in both cases:**
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- **Here:**

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016

3 / 20
A labor supply perspective

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
A labor supply perspective

- **Standard LS models:**
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process
- **But in both cases:**
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous
- **Here:**
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)
A labor supply perspective

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)

- Crucial importance in analyzing *long term consequences* of policy reforms: Will they affect matching patterns? Will they affect HC investments?
A labor supply perspective

- Standard LS models:
 - Unitary: one utility, either joint determination of LS or wife’s LS conditional on husband’s
 - Collective: joint determination, two utilities plus decision process

- But in both cases:
 - Human capital is exogenous
 - Identity (and HC) of the spouse exogenous

- Here:
 - Recognize endogeneity of both pre-marital HC investment and choice of a spouse
 - In fact, intra-household issues crucial to understand pre-marital investments (CIW, AER 2009)

- Crucial importance in analyzing long term consequences of policy reforms: Will they affect matching patterns? Will they affect HC investments?

- This paper: investigates these aspects
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW

...
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only

Chiappori, Costa Dias, Meghir (Columbia Univeristy, UCL, IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

Here: we observe:

- Matching patterns...
- ...and behavior (here labor supply)

Basic insight:

- Labor supply behavior provides information on preferences!
- Recover total surplus
- More robust estimates, more general models

This paper: estimation of a matching model of this type
An empirical matching perspective

- Standard empirical approach: Choo-Siwow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:

- Basic insight: Labor supply behavior provides information on preferences!
 - recover total surplus
 - More robust estimates, more general models

- Endogenous education choices explicitly modeled

This paper: estimation of a matching model of this type
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)

Basic insight: Labor supply behavior provides information on preferences!

More robust estimates, more general models

Endogenous education choices explicitly modeled

This paper: estimation of a matching model of this type
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... *and* behavior (here labor supply)

- Basic insight:
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)

- Basic insight:
 - Labor supply behavior provides information on preferences → recover total surplus
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... and behavior (here labor supply)

- Basic insight:
 - Labor supply behavior provides information on preferences → recover total surplus
 - More robust estimates, more general models
An empirical matching perspective

- Standard empirical approach: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is separable
 - **Bottom line:** identification from matching patterns only
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... *and* behavior (here labor supply)

- Basic insight:
 - Labor supply behavior provides information on preferences → recover *total surplus*
 - More robust estimates, more general models
 - Endogenous education choices explicitly modeled
An empirical matching perspective

- **Standard empirical approach**: Choo-Siow, CSW
 - Stochastic structure: surplus is the sum of a deterministic and a stochastic part; stochastic part is *separable*
 - **Bottom line**: *identification from matching patterns only*
 - Therefore: serious limitations on identifiability (highly parametric, no OIR)

- Here: we observe:
 - Matching patterns ...
 - ... *and* behavior (here labor supply)

- **Basic insight**:
 - Labor supply behavior provides information on preferences → recover *total surplus*
 - More robust estimates, more general models
 - Endogenous education choices explicitly modeled

- **This paper**: estimation of a matching model of this type
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: \((\text{education, ability}) + \text{random dynamics}\)
Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost.
- Human Capital: (education, ability) + random dynamics.
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative.
Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost.
- Human Capital: (education, ability) + random dynamics.
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative.
- Efficient risk sharing within the household, efficient labor supply.
Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: \((\text{education, ability}) + \text{random dynamics}\)
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: \((\text{education, ability}) + \text{random dynamics}\)
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption
 - Risk sharing
The framework

Basic features:

- Agents invest in education *before entering the matching game*, based on idiosyncratic ability and cost
- Human Capital: (education, ability) + random dynamics
- At any moment, Human Capital stock determines the wage process; shocks affecting HC and wages, multiplicative
- Efficient risk sharing within the household, efficient labor supply
- Preferences: leisure, one private and one public good
- Marital gain: twofold
 - Public consumption
 - Risk sharing
- TU context (despite strictly concave VNM utilities)
Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.
Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

Agents enter the MM with their H; matching takes place; full commitment (no divorce)
Timing

1. Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

2. Agents enter the MM with their H; matching takes place; full commitment (no divorce).

3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
1. Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

2. Agents enter the MM with their H; matching takes place; full commitment (no divorce).

3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized.
Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

Agents enter the MM with their H; matching takes place; full commitment (no divorce).

Life cycle labor supply → T subperiods; at each subperiod:
- Wage shocks are realized
- Agents supply labor, save and consume
Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

Agents enter the MM with their H; matching takes place; full commitment (no divorce).

Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:

- Wage shocks are realized
- Agents supply labor, save and consume
- Note that shocks can be permanent ...
1. Agents draw their ability, education costs and marital preferences, and invest in education; human capital H depends on ability and education.

2. Agents enter the MM with their H; matching takes place; full commitment (no divorce).

3. Life cycle labor supply $\rightarrow T$ subperiods; at each subperiod:
 - Wage shocks are realized
 - Agents supply labor, save and consume
 - Note that shocks can be permanent ...
 - ... including initial productivity (or HC) shock
Solving the game

Backwards:

- Start with periods 3
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model

...
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under TU → household utility → standard, unitary model of dynamic labor supply
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under TU → household utility → standard, unitary model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level;* moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016 7 / 20
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU →* household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - Under TU → household utility → standard, unitary model of dynamic labor supply
 - Defines total expected surplus at the household level; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation not determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - → ultimately, *returns to education*
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - → ultimately, *returns to education*

- Finally period 1: education decisions
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - → ultimately, *returns to education*

- Finally period 1: education decisions
 - non cooperative game
Solving the game

Backwards:

- Start with periods 3
 - Collective, life cycle LS model
 - *Under TU* → household utility → standard, *unitary* model of dynamic labor supply
 - Defines total expected surplus *at the household level*; moreover
 - Identifies preferences and joint distribution of education and ability → therefore (expected) surplus.
 - Intra-household allocation *not* determined

- Then period 2:
 - Observe matching patterns (who marries whom by HC, i.e. education/ability)
 - Identify idiosyncratic matching preferences and (future, contingent) intra-household allocation (Pareto weights)
 - → ultimately, *returns to education*

- Finally period 1: education decisions
 - non cooperative game
 - → identifies the distribution of education costs
Main problem: stage 1 is a non cooperative game
Main problem: stage 1 is a non cooperative game

- existence may be problematic
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

Basic result (Nöldeke Samuelson 2015): consider the following, auxiliary game:

1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, and (jointly) invest in education

2. Life cycle labor supply

This is a standard matching game; existence is guaranteed; generic uniqueness; efficient equilibrium

Crucial result (NS 2015): The stable matching of the auxiliary game can be implemented as a Nash equilibrium of the initial game

Consequences:

- Existence: guaranteed
- Uniqueness: 'generically unique' efficient equilibrium

... but 'coordination failures' are possible

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)

Marriage, Labor Supply and Education

Chicago, October 28, 2016
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game*:

Life cycle labor supply

\[T \] subperiods

This is a standard matching game; existence is guaranteed; *generic uniqueness*; efficient

Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game

Consequences:

- Existence: guaranteed
- Uniqueness: "generically unique" efficient equilibrium
 - ... but "coordination failures" are possible

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)

Marriage, Labor Supply and Education

Chicago, October 28, 2016 8 / 20
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, *auxiliary game*:
 - Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

- Basic result (Nöldeke Samuelson 2015): consider the following, *auxilliary game*:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, *then* (jointly) invest in education
 2. Life cycle labor supply $\rightarrow T$ subperiods
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, auxiliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply $\rightarrow T$ subperiods
- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

- Basic result (Nöldeke Samuelson 2015): consider the following, auxilliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply $\rightarrow T$ subperiods

- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency

- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, auxilliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply → T subperiods
- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency
- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

- Basic result (Nöldeke Samuelson 2015): consider the following, auxilliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply $\rightarrow T$ subperiods

- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency

- Crucial result (NS 2015): The stable matching of the auxilliary game can be implemented as a Nash equilibrium of the initial game

- Consequences:
 - Existence: guaranteed
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic
- Basic result (Nöldeke Samuelson 2015): consider the following, auxiliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply \(T \) subperiods
- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency
- Crucial result (NS 2015): The stable matching of the auxiliary game can be implemented as a Nash equilibrium of the initial game
- Consequences:
 - Existence: guaranteed
 - Uniqueness: ‘generically unique’ efficient equilibrium
Existence and uniqueness

- Main problem: stage 1 is a non cooperative game
 - existence may be problematic
 - uniqueness is problematic

- Basic result (Nöldeke Samuelson 2015): consider the following, auxiliary game:
 1. Agents draw their ability, education costs and marital preferences; they match on these characteristics, then (jointly) invest in education
 2. Life cycle labor supply $\rightarrow T$ subperiods

- This is a standard matching game; existence is guaranteed; ‘generic uniqueness’; efficiency

- Crucial result (NS 2015): The stable matching of the auxiliary game can be implemented as a Nash equilibrium of the initial game

- Consequences:
 - Existence: guaranteed
 - Uniqueness: ‘generically unique’ efficient equilibrium
 - ... but ‘coordination failures’ are possible
Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific

$$u_{it}(Q_t, C_{it}, L_{it}) = \ln (C_{it} Q_t + \alpha_{it} L_{it} Q_t) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + \nu_1 t_1 L_{1t} + \nu_2 t L_{2t} + p Q_t$$
Period 3, subperiod t

- Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific

$$ u_{it} (Q_t, C_{it}, L_{it}) = \ln (C_{it} Q_t + \alpha_{it} L_{it} Q_t) \text{ under BC} $$

$$ Y_t + RS_{t-1} = C_t + S_t + w_{1t} L_{1t} + w_{2t} L_{2t} + pQ_t $$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
Period 3, subperiod t

- Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific
 \[u_{it} (Q_t, C_{it}, L_{it}) = \ln (C_{it} Q_t + \alpha_{it} L_{it} Q_t) \]
 under BC
 \[Y_t + RS_{t-1} = C_t + S_t + w_{1t1} L_{1t} + w_{2t} L_{2t} + pQ_t \]

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level

- Labor Supply: discrete; preference shocks on the αs
Period 3, subperiod t

- Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific

 \[u_{it} (Q_t, C_{it}, L_{it}) = \ln (C_{it} Q_t + \alpha_{it} L_{it} Q_t) \text{ under BC} \]

 \[Y_t + RS_{t-1} = C_t + S_t + \omega_{1t1} L_{1t} + \omega_{2t} L_{2t} + pQ_t \]

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level

- Labor Supply: discrete; preference shocks on the αs

- Euler equation, solved numerically
Period 3, subperiod \(t \)

- Preferences over private consumption \((C)\), public consumption \((Q)\), leisure \((L_i)\); gender specific

\[
 u_{it} (Q_t, C_{it}, L_{it}) = \ln (C_{it} Q_t + \alpha_{it} L_{it} Q_t) \text{ under BC}
\]

\[
 Y_t + RS_{t-1} = C_t + S_t + \omega_{1t} L_{1t} + \omega_{2t} L_{2t} + pQ_t
\]

- Note: GQL (ordinal) + ISHARA \(\Rightarrow \) TU: standard, unitary model at the household level

- Labor Supply: discrete; preference shocks on the \(\alpha_s \)

- Euler equation, solved numerically

- LS and wage dynamics identify the joint distribution of education and ability
Period 3, subperiod t

- Preferences over private consumption (C), public consumption (Q), leisure (L_i); gender specific

$$u_{it} (Q_t, C_{it}, L_{it}) = \ln \left(C_{it} Q_t + \alpha_{it} L_{it} Q_t \right) \text{ under BC}$$

$$Y_t + RS_{t-1} = C_t + S_t + w_{1t} L_{1t} + w_{2t} L_{2t} + pQ_t$$

- Note: GQL (ordinal) + ISHARA \Rightarrow TU: standard, unitary model at the household level
- Labor Supply: discrete; preference shocks on the αs
- Euler equation, solved numerically
- LS and wage dynamics identify the joint distribution of education and ability
- Expected value functions at initial date ($t = 1$): $v_i = EV_i$ with

$$e^{v_1} + e^{v_2} = e^{\frac{1-\delta}{1-\delta} Y(H_1, H_2)}$$

\rightarrow therefore TU
Period 2: econometric structure

- Background: Choo-Siow, CSW:

- Woman \(i\) draws a vector of preferences \(\alpha_i = \alpha_{0i}, \alpha_{1i}, \ldots, \alpha_{Ni}\),
- Man \(j\) draws \(\beta_j = \beta_{0j}, \beta_{1j}, \ldots, \beta_{Nj}\).

Surplus derived from the matching of \(i\) with \(j\):

\[s(i, j) = S(H_i, H_j) + \alpha_j I_i + \beta_I j (\text{plus possibly some deterministic components}) \]

In particular (Graham 2011, 13):
- If supermodularity, AM more frequent than under random matching

Theorem (CSW 2014):
- There exists \(V_1(H_I, H_J)\) and \(V_2(H_I, H_J)\) such that:
 \[V_1(H_I, H_J) + V_2(H_I, H_J) = S(H_I, H_J) \]

The utility of \(i\) is \(V_1(H_I, H_J) + \alpha_j I_i\),

The utility of \(j\) is \(V_2(H_I, H_J) + \beta_I j\).
Period 2: econometric structure

- **Background:** Choo-Siow, CSW:
 - Finite levels of HC, $H_i, i \in \{1, ..., N\}$

Chiappori, Costa Dias, Meghir (Columbia University, UCL, IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016 10 / 20
Period 2: econometric structure

- Background: Choo-Siow, CSW:
 - Finite levels of HC, \(H_i, i \in \{1, ..., N\} \)
 - Woman \(i \in I \) draws a vector of preferences \(\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N) \), man \(j \in J \) draws \(\beta_j = (\beta_j^0, \beta_j^1, ..., \beta_j^N) \)

Surplus derived from the matching of \(i \in I \) with \(j \in J \):
\[
s(i, j) = S(H_I, H_J) + \alpha_J^i + \beta_I^j\]

In particular (Graham 2011, 13): if supermodularity, AM more frequent than under random matching

Theorem (CSW 2014): there exists \(V_1(H_I, H_J) \) and \(V_2(H_I, H_J) \) such that:
\[
V_1(H_I, H_J) + V_2(H_I, H_J) = S(H_I, H_J)
\]

The utility of \(i \) is \(V_1(H_I, H_J) + \alpha_J^i \)
The utility of \(j \) is \(V_2(H_I, H_J) + \beta_I^j \)
Period 2: econometric structure

- Background: Choo-Siow, CSW:
 - Finite levels of HC, H_i, $i \in \{1, ..., N\}$
 - Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man $j \in J$ draws $\beta_j = (\beta_j^0, \beta_j^1, ..., \beta_j^N)$
 - Surplus derived from the matching of $i \in I$ with $j \in J$:
 $$ s(i, j) = S(H_i, H_J) + \alpha_i^j + \beta_j^I $$
 (plus possibly some deterministic components)
Period 2: econometric structure

- **Background:** Choo-Siow, CSW:
 - Finite levels of HC, H_i, $i \in \{1, ..., N\}$
 - Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man $j \in J$ draws $\beta_j = (\beta_j^0, \beta_j^1, ..., \beta_j^N)$
 - Surplus derived from the matching of $i \in I$ with $j \in J$:
 \[s(i, j) = S(H_i, H_J) + \alpha_i^J + \beta_j^I \]
 (plus possibly some deterministic components)
 - In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
Period 2: econometric structure

- **Background:** Choo-Siow, CSW:
 - Finite levels of HC, $H_i, i \in \{1, ..., N\}$
 - Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man $j \in J$ draws $\beta_j = (\beta_j^0, \beta_j^1, ..., \beta_j^N)$
 - Surplus derived from the matching of $i \in I$ with $j \in J$:
 $$s(i,j) = S(H_i, H_J) + \alpha_i^J + \beta_j^I$$
 (plus possibly some deterministic components)

- In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching

- **Theorem (CSW 2014):** there exists $V_1(H_i, H_J)$ and $V_2(H_i, H_J)$ such that:
 $$V_1(H_i, H_J) + V_2(H_i, H_J) = S(H_i, H_J)$$ and
Period 2: econometric structure

- **Background:** Choo-Siow, CSW:
 - Finite levels of HC, $H_i, i \in \{1, ..., N\}$
 - Woman $i \in I$ draws a vector of preferences $\alpha_i = (\alpha_i^0, \alpha_i^1, ..., \alpha_i^N)$, man $j \in J$ draws $\beta_j = (\beta_j^0, \beta_j^1, ..., \beta_j^N)$
 - Surplus derived from the matching of $i \in I$ with $j \in J$:
 \[
 s(i, j) = S(H_i, H_J) + \alpha_i^J + \beta_j^I
 \]
 (plus possibly some deterministic components)
 - In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
 - **Theorem (CSW 2014):** there exists $V_1(H_i, H_J)$ and $V_2(H_i, H_J)$ such that:
 \[
 V_1(H_i, H_J) + V_2(H_i, H_J) = S(H_i, H_J)
 \]
 - The utility of i is $V_1(H_i, H_J) + \alpha_i^J$
Period 2: econometric structure

- **Background**: Choo-Siow, CSW:
 - Finite levels of HC, $H_i, i \in \{1, ..., N\}$
 - Woman $i \in I$ draws a vector of preferences $\alpha_i = \left(\alpha_i^0, \alpha_i^1, ..., \alpha_i^N\right)$, man $j \in J$ draws $\beta_j = \left(\beta_j^0, \beta_j^1, ..., \beta_j^N\right)$
 - Surplus derived from the matching of $i \in I$ with $j \in J$:
 \[s(i, j) = S(H_i, H_J) + \alpha_i^J + \beta_j^I \]
 (plus possibly some deterministic components)
 - In particular (Graham 2011,13): if supermodularity, AM more frequent than under random matching
 - **Theorem (CSW 2014)**: there exists $V_1(H_i, H_J)$ and $V_2(H_i, H_J)$ such that:
 \[V_1(H_i, H_J) + V_2(H_i, H_J) = S(H_i, H_J) \]
 The utility of i is $V_1(H_i, H_J) + \alpha_i^J$
 The utility of j is $V_2(H_i, H_J) + \beta_j^I$
Corollary (CSW 2014)

- In the CS context:
In the CS context:

- i’s choice solves

$$\max_j V_1(H_I, H_J) + \alpha_i^J$$

Therefore discrete choice models:

- $N_{\text{multilogits}}$ (marital choice of each male/female in class I/J)

exactly identified in a highly parametric context (extreme values, no heteroskedasticity)

In our context: same, plus restrictions, since

$$V_1(H_I, H_J) + V_2(H_I, H_J) = S(H_I, H_J)$$

where $S(H_I, H_J)$ can be recovered from labor supply behavior
Corollary (CSW 2014)

- In the CS context:
 - i’s choice solves
 $$\max_{j} V_1 (H_I, H_J) + \alpha_i^j$$
 - j’s choice solves
 $$\max_{j} V_2 (H_I, H_J) + \beta_j^I$$
Corollary (CSW 2014)

- In the CS context:
 - \(i \)'s choice solves
 \[
 \max_j V_1 (H_I, H_J) + \alpha_i^j
 \]
 - \(j \)'s choice solves
 \[
 \max_i V_2 (H_I, H_J) + \beta_j^i
 \]
 - Therefore discrete choice models:
Corollary (CSW 2014)

- In the CS context:
 - i’s choice solves
 $$\max_j V_1(H_I, H_J) + \alpha^J_i$$
 - j’s choice solves
 $$\max_I V_2(H_I, H_J) + \beta^I_j$$
 - Therefore discrete choice models:
 - $2 \times N$ multilogits (marital choice of each male/female in class I/J)
Corollary (CSW 2014)

In the CS context:

- *i*’s choice solves
 \[
 \max_j V_1 (H_I, H_J) + \alpha_i^j
 \]

- *j*’s choice solves
 \[
 \max_I V_2 (H_I, H_J) + \beta_j^I
 \]

Therefore discrete choice models:

- \(2 \times N\) multilogits (marital choice of each male/female in class \(I/J\))
- exactly identified in a highly parametric context (extreme values, no heteroskedasticity)
Corollary (CSW 2014)

- In the CS context:
 - i’s choice solves
 \[
 \max_j V_1 (H_I, H_J) + \alpha_i^j
 \]
 - j’s choice solves
 \[
 \max_j V_2 (H_I, H_J) + \beta_j^l
 \]
 - Therefore discrete choice models:
 - $2 \times N$ multilogits (marital choice of each male/female in class I/J)
 - exactly identified in a highly parametric context (extreme values, no heteroskedasticity)

- In our context: same, plus restrictions, since
 \[
 V_1 (H_I, H_J) + V_2 (H_I, H_J) = S (H_I, H_J)
 \]
 where $S (H_I, H_J)$ can be recovered from labor supply behavior
 $\rightarrow 2 \times N$ multilogits with N^2 restrictions on the thresholds.
Impact of policy or other economic changes

Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumption...
 - Including public
- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns...
 - And the distribution of LS and consumption
- Long long term: returns to education are affected; therefore possible impact on HC acquisition!
Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public
Impact of policy or other economic changes

Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- Long term: matching endogenous
Impact of policy or other economic changes

Assume changes affect, say, wage dynamics. Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
Impact of policy or other economic changes

Assume changes affect, say, wage dynamics.
Impact? → Distinguish ST and LT

- Short term: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- Long term: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...
Assume changes affect, say, wage dynamics.

Impact? → Distinguish ST and LT

- **Short term:** couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- **Long term:** matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...
 - ... and the distribution of LS and consumption
Assume changes affect, say, wage dynamics.

Impact? → Distinguish ST and LT

- **Short term**: couples are given; standard impact on:
 - Labor supplies (intensive and extensive margins)
 - Consumptions ...
 - ... including public

- **Long term**: matching endogenous
 - Changes the respective weight of the deterministic and random parts of the surplus
 - Therefore changes the matching patterns ...
 - ... and the distribution of LS and consumption

- ‘**Long long’** term: returns to education are affected; therefore possible impact on HC acquisition!
Stochastic structure

- **Wage process**

 \[
 \ln w_{it} = \ln W(\theta_i) + \delta_1 t + \delta_2 t^2 + \delta_3 t^3 + e_{it} + \epsilon_{it}
 \]

 \[
 e_{it} = \rho e_{it-1} + \xi_{it}
 \]

- **Preferences**

 \[
 \alpha_{it} = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \alpha_3 t^3 + \eta_i + u_{it}
 \]
Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC
Simulated moments; 3 levels of education, 2 levels of ability → 6 levels of HC

Stepwise procedure:
Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC

Stepwise procedure:

- Wage stochastic process (endogeneous education \rightarrow control function approach).
Estimation

- Simulated moments; 3 levels of education, 2 levels of ability → 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education → control function approach).
 - Ability and preferences distribution (taking into account endogenous selection into employment)
Simulated moments; 3 levels of education, 2 levels of ability \rightarrow 6 levels of HC

Stepwise procedure:

- Wage stochastic process (endogeneous education \rightarrow control function approach).
- Ability and preferences distribution (taking into account endogenous selection into employment)
- Matching probabilities identify Pareto weights \rightarrow individual benefits of education
Estimation

- Simulated moments; 3 levels of education, 2 levels of ability → 6 levels of HC
- Stepwise procedure:
 - Wage stochastic process (endogeneous education → control function approach).
 - Ability and preferences distribution (taking into account endogenous selection into employment)
 - Matching probabilities identify Pareto weights → individual benefits of education
 - Education choices
Results: surplus

Data: 18 annual waves (1991 to 2008) of the British Household Panel Survey (BHPS)

Table 4: Economic surplus from marriage

<table>
<thead>
<tr>
<th>Men’s educ and ability</th>
<th>Sec (L)</th>
<th>HS (L)</th>
<th>Sec (H)</th>
<th>HS (H)</th>
<th>Univ (L)</th>
<th>Univ (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec (L)</td>
<td>85.06</td>
<td>148.88</td>
<td>189.26</td>
<td>189.10</td>
<td>197.17</td>
<td>245.39</td>
</tr>
<tr>
<td>HS (L)</td>
<td>82.61</td>
<td>144.33</td>
<td>189.53</td>
<td>185.97</td>
<td>199.87</td>
<td>249.21</td>
</tr>
<tr>
<td>Sec (H)</td>
<td>129.54</td>
<td>210.34</td>
<td>266.84</td>
<td>264.88</td>
<td>299.85</td>
<td>370.86</td>
</tr>
<tr>
<td>Univ (L)</td>
<td>101.45</td>
<td>176.79</td>
<td>241.15</td>
<td>232.27</td>
<td>268.43</td>
<td>338.90</td>
</tr>
<tr>
<td>HS (H)</td>
<td>139.01</td>
<td>220.91</td>
<td>288.21</td>
<td>281.00</td>
<td>326.74</td>
<td>405.43</td>
</tr>
<tr>
<td>Univ (H)</td>
<td>142.96</td>
<td>234.71</td>
<td>317.10</td>
<td>305.31</td>
<td>366.01</td>
<td>460.91</td>
</tr>
</tbody>
</table>

Rows and Columns ordered by male and female human capital respectively. L and H signify low and high ability respectively.

- Supermodular at the top of the distribution ... but not everywhere
Results: singles

Table 6: Proportion of singles by level of human capital.

<table>
<thead>
<tr>
<th>Level of Human Capital</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>0.11</td>
<td>0.08</td>
<td>0.14</td>
<td>0.39</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>Men</td>
<td>0.22</td>
<td>0.31</td>
<td>0.07</td>
<td>0.20</td>
<td>0.16</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Table 5: Marital Matching patterns

<table>
<thead>
<tr>
<th>Men’s educ</th>
<th>Women’s education</th>
<th>Simulated Proportions</th>
<th>Data Proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Men’s choices</td>
<td></td>
</tr>
<tr>
<td>Sec</td>
<td>0.326</td>
<td>0.068</td>
<td>0.001</td>
</tr>
<tr>
<td>HS</td>
<td>0.158</td>
<td>0.124</td>
<td>0.027</td>
</tr>
<tr>
<td>Univ</td>
<td>0.007</td>
<td>0.048</td>
<td>0.049</td>
</tr>
</tbody>
</table>

The numbers represent cell proportions.
Table 8: Sharing rule

<table>
<thead>
<tr>
<th>Men’s educ and ability</th>
<th>Sec (L)</th>
<th>HS (L)</th>
<th>Sec (H)</th>
<th>HS (H)</th>
<th>Univ (L)</th>
<th>Univ (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec (L)</td>
<td>0.833</td>
<td>0.365</td>
<td>0.523</td>
<td>0.164</td>
<td>0.248</td>
<td>0.163</td>
</tr>
<tr>
<td></td>
<td>(0.261)</td>
<td>(0.114)</td>
<td>(0.148)</td>
<td>(0.080)</td>
<td>(0.073)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>HS (L)</td>
<td>0.931</td>
<td>0.606</td>
<td>0.604</td>
<td>0.377</td>
<td>0.054</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>(0.335)</td>
<td>(0.254)</td>
<td>(0.212)</td>
<td>(0.152)</td>
<td>(0.024)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Sec (H)</td>
<td>0.611</td>
<td>0.455</td>
<td>0.452</td>
<td>0.293</td>
<td>0.072</td>
<td>0.087</td>
</tr>
<tr>
<td></td>
<td>(0.225)</td>
<td>(0.172)</td>
<td>(0.155)</td>
<td>(0.127)</td>
<td>(0.047)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Univ (L)</td>
<td>0.937</td>
<td>0.856</td>
<td>0.943</td>
<td>0.663</td>
<td>0.440</td>
<td>0.356</td>
</tr>
<tr>
<td></td>
<td>(0.330)</td>
<td>(0.343)</td>
<td>(0.335)</td>
<td>(0.231)</td>
<td>(0.165)</td>
<td>(0.110)</td>
</tr>
<tr>
<td>HS (H)</td>
<td>0.768</td>
<td>0.495</td>
<td>0.583</td>
<td>0.363</td>
<td>0.226</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.252)</td>
<td>(0.193)</td>
<td>(0.188)</td>
<td>(0.142)</td>
<td>(0.037)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Univ (H)</td>
<td>0.695</td>
<td>0.760</td>
<td>0.744</td>
<td>0.617</td>
<td>0.415</td>
<td>0.361</td>
</tr>
<tr>
<td></td>
<td>(0.330)</td>
<td>(0.285)</td>
<td>(0.262)</td>
<td>(0.213)</td>
<td>(0.136)</td>
<td>(0.121)</td>
</tr>
</tbody>
</table>

Notes: Male Share of Surplus. Asymptotic standard errors in parentheses computed using the bootstrap. Ordering of cells by male and female human capital respectively. L and H signify low and high ability respectively.
Simulation: decrease in education costs

Table 9: Education distribution

<table>
<thead>
<tr>
<th></th>
<th>Men baseline</th>
<th>Men low cost Univ</th>
<th>women baseline</th>
<th>women low cost Univ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec</td>
<td>0.450</td>
<td>0.404</td>
<td>0.542</td>
<td>0.490</td>
</tr>
<tr>
<td>HS</td>
<td>0.400</td>
<td>0.368</td>
<td>0.331</td>
<td>0.309</td>
</tr>
<tr>
<td>Univ</td>
<td>0.150</td>
<td>0.227</td>
<td>0.128</td>
<td>0.202</td>
</tr>
</tbody>
</table>

Table 10: Changes in the matching patterns

<table>
<thead>
<tr>
<th>Men's educ and ability</th>
<th>Sec (L)</th>
<th>HS (L)</th>
<th>Sec (H)</th>
<th>HS (H)</th>
<th>Univ (L)</th>
<th>Univ (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sec (L)</td>
<td>-0.21</td>
<td>-0.21</td>
<td>-0.32</td>
<td>-0.13</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>HS (L)</td>
<td>-0.23</td>
<td>-0.07</td>
<td>-0.30</td>
<td>-0.06</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>Sec (H)</td>
<td>-0.73</td>
<td>-0.21</td>
<td>-1.10</td>
<td>-0.12</td>
<td>-0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Univ (L)</td>
<td>0.00</td>
<td>0.23</td>
<td>-0.02</td>
<td>0.17</td>
<td>0.16</td>
<td>0.23</td>
</tr>
<tr>
<td>HS (H)</td>
<td>-0.21</td>
<td>-0.41</td>
<td>-0.59</td>
<td>-0.32</td>
<td>0.20</td>
<td>0.27</td>
</tr>
<tr>
<td>Univ (H)</td>
<td>0.00</td>
<td>0.53</td>
<td>0.21</td>
<td>0.33</td>
<td>1.31</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Numbers correspond to changes in the proportion of each cell. Ordering of cells by male and female human capital respectively. L and H signify low and high ability respectively.
Conclusion

- General model:

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
Conclusion

- **General model:**
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

Chiappori, Costa Dias, Meghir (Columbia University, UCL and IFS, Yale University)
Marriage, Labor Supply and Education
Chicago, October 28, 2016
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
 - Nature of the public good: investment in children’s HC
Conclusion

- **General model:**
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- **Policy reforms:** simulate long term effects

- **Extensions (future research):**
 - Nature of the public good: investment in children’s HC
 - Explicit estimation of the production function
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
 - Nature of the public good: investment in children’s HC
 - Explicit estimation of the production function
 - Requires time use data, ...
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
 - Nature of the public good: investment in children’s HC
 - Explicit estimation of the production function
 - Requires time use data, ...

- Dynamics:
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
 - Nature of the public good: investment in children’s HC
 - Explicit estimation of the production function
 - Requires time use data, ...
 - Dynamics:
 - limited commitment
Conclusion

- General model:
 - Joint determination of education, marital patterns and dynamic labor supply
 - ‘Tractable general equilibrium’ perspective
 - In particular, (expected) marital patterns play a key role for education choices

- Policy reforms: simulate long term effects

- Extensions (future research):
 - Nature of the public good: investment in children’s HC
 - Explicit estimation of the production function
 - Requires time use data, ...
 - Dynamics:
 - limited commitment
 - in particular, divorce