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Introduction

• Based on Handbook of Labor Economics Chapter by Michael
Keane, Petra Todd and Kenneth Wolpin

• Introduction to the methods of structural estimation of
discrete choice dynamic programming models (DCDP) for
policy evaluation purposes.

• The development of DCDP estimation methods over the last
25 years opened up new frontiers for empirical research in
labor economics, industrial organization, economic
demography, health economics, development economics and
political economy

• Will survey applications in labor economics and development.
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Early papers

• Gotz and McCall (1984) considered the decision to re-enlist in
the military

• Miller (1984) the decision to change occupations
• Pakes (1986) the decision to renew a patent
• Rust (1987) the decision to replace a bus engine
• Wolpin (1984) the decision to have a child
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Introduction to the solution and estimation of
DCDP models
• The development of the DCDP empirical framework was a
natural extension of the static discrete choice empirical
framework.

• The latent variable specification is the building block for
economic models of discrete choice.

• Consider a binary choice model in which an economic agent
with imperfect foresight, denoted by i, makes a choice at each
discrete period t, from t = 1, ..T , between two alternatives
dit ∈ {0, 1}.

• Might be the choice of whether to accept a job offer or remain
unemployed or whether to attend college or enter the labor
force or whether to participate in a training program.

Todd DCDP Models 4/118



- The outcome is determined by whether a latent variable, v∗it,
reflecting the difference in the payoffs of the dit = 1 and dit = 0
alternatives, crosses a scalar threshold value, WLOG taken to be
zero.
- The preferred alternative is the one with the largest payoff, i.e.,
where dit = 1 if v∗it ≥ 0 and dit = 0 otherwise.
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The latent variable may be a function of three types of variables:
• D̃it is a vector of the history of past choices
(diτ : τ = 1, ..., t− 1)

• X̃it is a vector of contemporaneous and lagged values of J
additional variables (Xijτ : j = 1, ..., J ; τ = 1, ..., t) that are
not chosen by the agent and that enter the decision problem

• ε̃it (εiτ : τ = 1, ...t) is a vector of contemporaneous and lagged
unobservables that also enter the decision problem.
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The agent’s decision rule is:

dit = 1 if v∗it( D̃it, X̃it, ε̃it) ≥ 0, (1)
= 0 if v∗it( D̃it, X̃it, ε̃it) < 0.

-All empirical binary choice models, dynamic or static, are special
cases of this formulation.
- The underlying behavioral model that generated the latent
variable is dynamic if agents are forward looking, e.g. either v∗it
contains past choices, D̃it, or unobservables, ε̃it, that are serially
correlated.
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Researchers may have a number of different goals, such as:
• Test a prediction of the theory, such as how an observable
variable in v∗it affects dit.

• Determine the impact of a change in D̃it or X̃it on choices.
• Determine the impact of a change in something not in D̃it or
X̃it on choices.
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Example: Labor force participation of married
women

Consider the following static model of the labor force
participation decision of a married woman. Assume a unitary
model. The couple’s utility is

Uit = U(cit, 1− dit;κit(1− dit), εit(1− dit)) (2)

cit is household i’s consumption at period t,
dit = 1 if the wife works, = 0 otherwise
κit are observables affecting utility from leisure
εit (serially uncorrelated) unobservable factors that affect the
couple’s valuation of the wife’s leisure (or home production).
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κit might include, among other things, the number of young
children in the household, nit and the duration of marriage, t.
The preference unobservable is assumed to be randomly drawn
independently over time.
The utility function has the usual properties:
∂U/∂C > 0, ∂2U/∂C2 < 0, U(C, 1) > U(C, 0).
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- The wife receives a wage offer of wit in each period t
- If the wife works, the household incurs a per-child child-care
cost, π, which is assumed to be time-invariant, unobserved, and
the same for all households.
-The husband works each period and generates income yit.
- The budget constraint is

cit = yit + witdit − πnitdit. (3)
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Wage offers are not observed for non-workers, so specify a wage
offer function:

wit = w(zit, ηit), (4)

- zit would typically contain educational attainment and
"potential" work experience (age - education - 6).
- ηit,the wage shock is assumed to be randomly drawn
independently over time.
- Unobservable factors that enter the couple’s utility function,
(εit), and (ηit) are assumed to have a joint distribution F .
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Substituting for consumption yields

Uit = U(yit+w(zit, ηit)dit−πnitdit, 1−dit;κit(1−dit), εit(1−dit)),
(5)

from which we get alternative-specific utilities, U1
it if the wife

works and U0
it if she does not, namely

U1
it = U(yit + w(zit, ηit)− πnit, 0), (6)

U0
it = U(yit, 1;κit, εit).
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The latent variable function, the difference in utilities, U1
it−U0

it, is

v∗it = v∗(yit,zit, nit, κit, εit, ηit) (7)

The participation decision is determined by the sign of the latent
variable:
dit = 1 if v∗it ≥ 0, dit = 0 otherwise.

Todd DCDP Models 14/118



- the household’s state space, Ωit, consists of all of the
determinants of the household’s decision, that is,
yit,zit, nit, κit, εit, ηit.
- the part of the state space observable to the researcher, Ω−it ,
consists of yit,zit, nit, κit.
- Define S(Ω−it) = {εit, ηit : v∗(εit, ηit; Ω−it) > 0} to be the set of
{εit, ηit} that induces a couple with a given observable state
space (Ω−it) to choose dit = 1.
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- Assuming that the elements of Ω−it are distributed
independently of εit and ηit, the probability of choosing the
working option (dit = 1), conditional on Ω−it , is:

Pr(dit = 1|Ω−it) =
∫
S(Ω−it)

dF = G(yit,zit, nit, κit), (8)

where Pr(dit = 0|Ω−it) = 1− Pr(dit = 1|Ω−it).
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- G(yit,zit, nit, κit) is a composite of three elements of the model,
which comprise the structure: U(·), w(·), F.
- Structural estimation (S) is concerned with recovering some or
all of the structural elements of the model.
- Non-structural (NS) estimation is concerned with recovering
G(·).
- Each of these estimation approaches can adopt auxiliary
assumptions in terms of parametric (P) forms for some or all of
the structural elements or for G(·) or be non-parametric (NP).
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Thus, there are four possible approaches to estimation:

- nonparametric/nonstructural (NP-NS)
- parametric/nonstructural (P-NS)
- nonparametric/structural (NP-S)
- parametric/nonstructural (P-S).
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Consider how each of these approaches can be used to address
the following goals:
Goal 1. Test the model by testing whether the probability of
working is increasing in the wage offer.
Goal 2. Determine the impact of changing any of the state
variables in the model on the participation probability
Goal 3. Determine the effect on the participation probability of
varying something that does not vary in the data, e.g. the effect
of a child care subsidy.
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Non-Parametric, Non-Structural:

We can estimate G(yit, zit, nit, κit) non-parametrically.
Goal 1: To test whether probability of working is increasing

in the wage offer, we need to be able to vary the wage offer
independently of other variables that affect participation. To do
that, there must be an exclusion restriction, a variable in zit that
is not in κit.
- If we observed wage offers for everyone, the test of the
prediction could be performed directly without an exclusion
restriction.
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Goal 2. Given a nonparametric estimate of G, we can
determine the effect on participation of a change in any of the
variables within the range of the data.

Goal 3: It is not possible to separately identify the effect of
a change in π (the effect of the child subsidy experiment).
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Parametric, Non-Structural:

Choose a functional form for G, (bounded between 0 and 1),
e.g., a cumulative standard normal in which the variables in Ω−it
enter as a single index.

Goal 1: Because of partial observability of wage offers,
testing the model’s prediction requires an exclusion a variable in
zit that is not in κit.

Goal 2. It is possible, given an estimate of G, to determine
the effect on participation of a change in any of the variables not
only within but also outside the range of the data.

Goal 3: It is not possible to separately identify π from
variation in nit.
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Non-Parametric, Structural

In this approach, one would typically attempt to separately
identify U(·), w(·), F from (8) without imposing auxiliary
assumption about those functions.
This is clearly infeasible. Even if we had data on all wage offers
so that w(·) and the marginal distribution, Fη, were
non-parametrically identified, we could still not identify U(·) and
F. Maybe possible to do some policy evaluation imposing
structural model but without fully recovering structure (will
discuss later).
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Parametric, Structural:

Consider the case in which all of the structural elements are
parametric, specified as:

Uit = cit + αit(1− dit) with αit = κitβ + εit, (9)
cit = yit + witdit − πnitdit, (10)
wit = zitγ + ηit, (11)
f(εit, ηit)˜N(0,Λ), (12)

where Λ =
(
σ2
ε ·

σεη σ2
η

)
.
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The difference in utilities, U1
it − U0

it, is

v∗it(zit, nit, κit, ηit, εit) = zitγ − πnit − κitβ + ηit − εit (13)
= ξ∗it(Ω−it) + ξit,

where ξit = ηit − εit, ξ∗it(Ω−it) = zitγ − πnit − κitβ and Ω−it now
consists of zit, nit and κit.
-Additive error not required (would not be additive if wages are in
log form or utility not linear in consumption).
- The linearity and separability of consumption in the utility
function implies that husband’s income does not enter v∗it and,
thus, does not affect the participation decision.
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The likelihood function, incorporating the wage information for
those women who work, is

L(θ;κiti , ziti , πiniti) = (14)
I∏
i=1

Pr(diti = 1, witi | Ω−it)diti Pr(diti = 0|Ω−iti)
1−diti = (15)

I∏
i=1

Pr( ξiti ≥ −ξ∗iti(Ω
−
iti

), ηiti = witi − zitiγ)diti× (16)

Pr(ξit < −ξ∗it(Ω−it))1−diti .
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The parameters to be estimated include β, γ, π, σ2
ε , σ

2
η, and σεη

- Not possible to separately identify the child care cost π from
the β associated with nit, say βn, which is an element of κit in
the utility function; only βn + π is identified.
- Joint normality is sufficient to identify the wage parameters, γ
and σ2

η, as well as (σ2
η − σεη)/σξ (Heckman (1978)).

- Data on work choices identify γ/σξ and β/σξ.
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To identify σξ, note that there are three possible types of
variables that appear in the likelihood function:
- variables that appear only in z (in the wage function)
- variables that appear only in κ (in the value of leisure)
- variables that appear in both κ and z.
Having identified the parameters of the wage function (the γ′s),
the identification of σξ (and thus also σεη) requires the existence
of at least one variable that appears only in the wage equation.
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Goal 1: As in the NS approaches, there must be an
exclusion restriction, in particular, a variable in zit that is not in
κit. Goal 2. It is possible to determine the effect on
participation of a change in any of the variables within and
outside of the range of the data.
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Goal 3: Suppose that a policy maker is considering
implementing a child care subsidy in which the couple is provided
a subsidy of τ dollars for each child if the wife works
The couple’s budget constraint with the subsidy is

cit = witdit + yit − (π − τ)ditnit, (17)

where (π − τ) is the net (of subsidy) cost of child care. With the
subsidy, the probability that the woman works is

Pr(dit = 1|Ω−it , τ) = Φ
(
zitγ − κitβ − (βn + π − τ)nit

σξ

)
, (18)

where Φ is the standard normal cumulative.
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Given identification of βn + π, to predict the effect of the policy
on participation, that is, the difference in the participation
probability when τ is positive and when τ is zero, it is necessary
to have identified σξ.
Government outlays on the program would be equal the subsidy
amount times the number of women with young children who
take-up the subsidy (work).
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- The policy effect can be estimated without direct policy
variation, i.e., we do not need to observe families with and
without the subsidy program.
- What was critical for identification is (exogenous) variation in
the wage (independent of preferences).
- The child care cost is a tax on working that is isomorphic to a
tax on the wage. Wage variation, independent of preferences,
provides policy-relevant variation.
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Summary
- Testing the prediction that participation rises with the wage
offer requires an exclusion restriction regardless of the approach,
because of the non-observability of wage offers for those that
choose not to work.
- With respect to goal 3, because of the subsidy acts like a wage
tax, the effect of the subsidy can be calculated by comparing
participation rates of women with a given wage to women with a
wage augmented by πnit (see Ichimura and Taber (2002) and
Todd and Wolpin (2008)).
- Parametric approach allows extrapolation outside of the sample
range of the variables whereas nonparametric approaches do not.
-The P-S approach enables the researcher to perform
counterfactual exercises, subsidizing the price of child care in the
example, even in the absence of variation in that child care price.

Todd DCDP Models 33/118



Dynamic Models

• In the static model, there was no connection between the
current participation decision and future utility.

• One way, among many, to introduce dynamics is through
human capital accumulation on the job. Suppose that the
woman’s wage increases with actual work experience, h, as
skills are acquired through learning by doing.

wit = zitγ1 + γ2hit + ηit, (19)

hit = ∑τ=t−1
τ=1 diτ is work experience at the start of period t.
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Work experience, hit, evolves according to

hit = hi,t−1 + di,t−1 (20)

where hi1 = 0.
-For now, assume the evolution of other elements of the state
space is non-stochastic.
-Assume that the preference shock (εit) and the wife’s wage
shock (ηit) are distributed joint normal and are mutually serially
independent, that is,
(f(εit, ηit|εit−1, ηit−1,....,εi1, ηi1) = f(εit, ηit)).
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- Assume that the couple maximizes expected present discounted
value of remaining lifetime utility at each period starting from an
initial period, t = 1, and ending at period T , the assumed
terminal decision period.
-For illustrative purposes, assume wife retires at T + 1 and that
value function at T + 1 is normalized to zero.
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- Letting Vt(Ωit) be the maximum expected present discounted
value of remaining lifetime utility at t = 1, ..., T given the state
space and discount factor δ,

Vt(Ωit) = max ditE

{
τ=T∑
τ=t

δτ−t[U1
iτdiτ + U0

iτ (1− diτ )]|Ωiτ

}
.

(21)
- The state space at t consists of the same elements as in the
static model augmented to include hit.
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The value function (Vt(Ωit)) can be written as the maximum over
the two alternative-specific value functions, V k

t (Ωit), k ∈ {0, 1}

Vt(Ωit) = max(V 0
t (Ωit), V 1

t (Ωit)) (22)

each of which obeys the Bellman equation

V k
t (Ωit) = Uk

it(Ωit) + δE[Vt+1(Ωi,t+1)|Ωit, dit = k] for t < T
(23)

= Uk
iT (ΩiT ) for t = T .

The expectation is taken over the distribution of the random
components of the state space at t+ 1, εi,t+1 and ηi,t+1,
conditional on the state space elements at t.
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The latent variable in the dynamic case is the difference in
alternative-specific value functions, V 1

t (Ωit)− V 0
t (Ωit):

v∗t (Ωit) = zitγ1 + γ2hit − πnit − κitβ − εit + ηit

+ δ×
{[E[Vt+1(Ωi,t+1)|Ωit, dit = 1]− [E[Vt+1(Ωi,t+1)|Ωit, dit = 0]}
= ξ∗it(Ω−it) + ξit.
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-To calculate these alternative-specific value functions, note first
that Ω−i,t+1, the observable part of the state space at t+ 1, is
fully determined by Ω−it and the choice at t, dit.
-Thus, one needs to be able to calculate E[Vt+1(Ωi,t+1)|Ωit, dit]
at all values of Ω−i,t+1 that may be reached from the state space
elements at t and a choice at t.
- A full solution of the dynamic programming problem consists
then of finding EVτ (Ωiτ ) = Emax[(V 0

τ (Ωiτ ), V 1
τ (Ωiτ ))] for all

values of Ω−iτ at all τ = 2, ...T .
- We denote this function by Emax(Ω−it) or Emaxt for short.
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- In this finite horizon model, the solution method is by
backwards recursion.
- First, we need to assume something about how the exogenous
observable state variables evolve, that is, zit, nit,κit. For simplicity
for now, assume zit = zi and κit = κi.
- Number of young children not constant over the life cycle, but
assume the woman is old enough in the decision period so that
the evolution of nit is non-stochastic.
- In general, if nit is the number of children under 6, then the
ages of the young children enter the state space.
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- To calculate the alternative-specific value functions at period
T − 1 for each element of Ω−i,T−1, we need to calculate EmaxT .
- Using the fact that, under normality,
E(εiT |ξiT < −ξ∗iT (Ω−iT )) = −σεξ

σξ

φ(−ξ∗iT (Ω−iT ))
Φ(−ξ∗iT (Ω−iT )) and

E(ηiT |ξiT ≥ −ξ∗iT (Ω−iT ) = σηξ
σξ

φ(−ξ∗iT (Ω−iT ))
1−Φ(−ξ∗iT (Ω−iT )) , we get

Emax T = yiT + (κiβ)Φ(−ξ∗iT (Ω−iT )) +
(ziγ1 + γ2hiT − πniT )× (1− Φ(−ξ∗iT (Ω−iT )) + σξφ(−ξ∗iT (Ω−iT )).

-This uses the fact that for any two random variables u and v,
Emax(u, v) = E(u|u > v) Pr(u > v) + E(v|v > u) Pr(v > u).
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-This expression requires an integration (the normal cdf) which
has no closed form and must be computed numerically.
- The RHS is a function of yiT , zi, κi, niT and hiT .
- Given a set of model parameters, the EmaxT function takes on
a scalar value for each element of its arguments.
- Noting that hiT = hi,T−1 + di,T−1, and being explicit about the
elements of EmaxT , the alternative-specific value functions at
T-1 are (dropping the i subscript for convenience):

V 0
T−1(ΩT−1) = yT−1 + κβ + εT−1 + δEmax(yT , z, κ, nT , hT−1),
V 1
T−1(ΩT−1) = yT−1 + zγ1 + γ2hT−1 − πnT−1 + ηT−1

+ δEmax(yT , z, κ, nT , hT−1 + 1).
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Thus,

v∗T−1(Ωi,T−1) = zγ1 + γ2hT−1 − πnT−1 − κβ − εT−1 + ηT−1

+ δ
{
Emax(yT,z, κ, nT , hT−1 + 1)− Emax(yT,z, κ, nT , hT−1)

}
= ξ∗T−1(Ω−T−1) + ξT−1.

Because yT enters both Emax(yT , z, κ, nT , hT−1 + 1) and
Emax(yT , z, κ, nT , hT−1) additively, it drops out of ξ∗T−1(Ω−T−1)
and thus out of v∗T−1
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The RHS is a function of yT−1, z, κ, nT−1, nT and hT−1.
- As with EmaxT , given a set of model parameters, the
EmaxT−1 function takes on a scalar value for each element of its
arguments.
- To calculate the T-2 alternative-specific value functions, will
need to calculate Emax T−1.

Emax T−1 = yT−1 + (κβ + δEmax(yT−1, z, κ, nT , hT−1))Φ(−ξ∗T−1(Ω−T−1))
+(zγ1 + γ2hT−1 − πnT−1 + δEmax(yT−1, z, κ, nT , hT−1 + 1))×

(1-Φ(−ξ∗T−1(Ω−T−1)) + σξφ(−ξ∗T−1(Ω−T−1)).

Todd DCDP Models 45/118



- The alternative-specific value functions at T-1 and the latent
variable function are:

V 0
T−2(ΩT−2) = yT−2 + κβ + εT−2 + δEmax(yT−1, z, κ, nT−1, nT , hT−2), (25)

V 1
T−2(ΩT−2) = yT−2 + zγ1 + γ2hT−2 − πnT−2 + ηT−2

+ δEmax(yT−1, z, κ, nT−1, nT , hT−2 + 1),
v∗T−2(ΩT−2) = zγ1 + γ2h.T−2 − πnT−2 − κβ − εT−2 + ηi,T−2

+ δ {Emax(yT−1, z, κ, nT−1, nT , hT−2 + 1)− Emax(yT−1, z, κ, nT−1, nT , hT−2)}

= ξ∗T−2(Ω−T−2) + ξT−2.

As at T, yT−1 drops out of ξ∗T−2(Ω−T−2) and thus v∗T−2.
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- Continue to solve backwards in this fashion.
- The full solution of the dynamic programming problem is the
set of Emaxt functions for all t from t = 1, .., T.
- These Emaxt functions provide all of the information necessary
to calculate the cut-off values, the ξ∗t (Ω−t )′s that are the inputs
into the likelihood function.
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- Estimation of the dynamic model requires that the researcher
have data on work experience, hit.
- Assume that the researcher has longitudinal data for I married
couples and denote by t1i and tLi the first and last periods of
data observed for married couple i.
- Note that t1i need not be the first period of marriage (although
it may be, subject to the marriage occurring after the woman’s
fecund period) and tLi need not be the last (although it may be).

Todd DCDP Models 48/118



- Denoting θ as the vector of model parameters, the likelihood
function is:

L(θ; data) = Πi=I
i=1Πτ=tLi

τ=t1i Pr(diτ = 1, wiτ |Ω−iτ )diτ Pr(diτ = 0|Ω−iτ )1−diτ ,

where Pr(diτ = 1, wiτ |Ω−iτ ) = Pr( ξiτ ≥ −ξ∗iτ (Ω−iτ ),
ηiτ = wiτ − ziτγ1 − γ2 hiτ ) and
Pr(diτ = 0|Ω−iτ ) = 1− Pr( ξiτ ≥ −ξ∗iτ (Ω−iτ ).
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- If the structure does not yield an additive (composite) error, the
latent variable function becomes v∗t (Ω

_
it, ηit, εit).

- Calculating the joint regions of ηit, εit that determine the
probabilities that enter the likelihood function and that are used
to calculate the Emax(Ω−it) function must, in that case, be done
numerically.
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Likelihood Estimation

Given joint normality of ε and η, the likelihood function is analytic

L(θ; data) =
∏

i=I
i=1

∏
τ=tLi
τ=t1i

{[
1− Φ

(
−ξ∗τ (Ω−iτ )− ρ σξ

ση
ηiτ

σξ(1− ρ2)
1
2

)]
1
ση
φ

(
ηiτ

ση

)}diτ
(26)

×
{

Φ
(
−ξ∗τ (Ω−iτ )

σξ

)}1−diτ
.

where ηiτ = wiτ − ziτγ1 − γ2 hiτ and where ρ is the correlation
coefficient between ξ and η.
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Likelihood Estimation

- Estimation proceeds by iterating between the solution of the
dynamic programming problem and the likelihood function for
alternative sets of parameters.
- Maximum likelihood estimates are consistent, asymptotically
normal and efficient.
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- Given the solution of the dynamic programming problem for the
cut-off values, the ξ∗it(Ω−it)’s, the estimation of the dynamic
model is in principle no different than the estimation of the static
model.
- There is the additional discount factor to be estimated, plus the
additional assumptions on how households forecast future
unobservables.
- The practical difference is the computational effort of having to
solve the dynamic programming problem in each iteration of
model parameters in maximizing the likelihood function.
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- Identification of model parameters requires the same exclusion
restriction as in the static case, at least one variable in the wage
equation that does not affect the value of leisure.
- Work experience, hit, would serve that role if it does not also
enter into the value of leisure (κ).
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Identification of the discount factor

- the difference in the future component of the expected value
functions under the two alternatives is in general a non-linear
function of the state variables and depends on the same set of
parameters as in the static case.
Rewriting the latent variable equation as:

v∗t (Ωit) = ziγ1 +γ2hit−πnit−κiβ+δWt+1(Ω−it)−εit+ηit, (27)

where W (·) is the difference in the future component of the
expected value functions, the non-linearities in Wt+1 that arise
from the distributional and functional form assumptions may be
sufficient to identify the discount factor.
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- Identification of the model parameters implies that all three
research goals (described previously) can be met.
- A quantitative assessment of the counterfactual child care
subsidy is feasible.
- The effect of such a subsidy will differ from a static model as
any effect of the subsidy on the current participation decision will
be transmitted to future participation decisions through the
change in work experience and future wages.

Todd DCDP Models 56/118



- If a surprise (permanent) subsidy were introduced at time t, the
effect of the subsidy on participation at t would require that the
couple’s dynamic programming problem be resolved with the
subsidy from t to T and the solution compared to that without
the subsidy.
- A pre-announced subsidy to take effect at t would require that
the solution be obtained back to the period of the announcement
because, given the dynamics, such a program would have effects
on participation starting from the date of the announcement.
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Independent additive type-1 extreme value errors:

- When shocks are additive and come from independent type-1
extreme value distributions, as noted by Rust (1987), the solution
to the dynamic programming problem and the choice probability
both have closed forms and do not require a numerical
integration as in the additive normal error case.
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It can be shown that for period t = T (dropping the i subscript
for convenience)

Pr(dT = 0|Ω−T ) = exp
(
zγ1 + γ2hT − πnT − κβ

ρ

)(
1 + exp(

zγ1 + γ2hT − πnT − κβ
ρ

)
)−1

Emax T = ρ

{
γ + log

[
exp
(
yT + zγ1 + γ2hT − πnT

ρ

)
+ exp

(
yT + κβ

ρ

)]}
= ρ

{
γ +

yT + zγ1 + γ2hT − πnT
ρ

− log(Pr(dT = 1|Ω−T )
}
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for t < T,Pr(dt = 1|Ω−t ) =

exp(
zγ1+γ2ht−πnt−κβ+δ

{
Emax t(yt+1,z,κ,̃nt+1,ht+1)−Emax t(yt+1,z,κ,̃nt+1,ht)

}
ρ

)

1 + exp(
zγ1+γ2hT−πnt−κβ+δ

{
Emax t(yt+1,z,κ,̃nt+1,ht+1)−Emax t(yt+1,z,κ,̃nt+1,ht)

}
ρ

)

Emax t = ρ

{
γ + log

[
exp
(
V 1
t (Ω−t )
ρ

)
+ exp

(
V 0
t (Ω−t )
ρ

)]}
= ρ{γ +

yt + zγ1 + γ2ht − πnt + δEmax(yt+1, z, κ, ñt+1, ht + 1)
ρ

−

log(Pr(dt = 1|Ω−it)}

where we have let ñt+1 stand for the vector of nt+1, ..., nT values.
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- The solution, as in the case of normal errors, consists of
calculating the Emaxt functions by backwards recursion.
- Unlike for normal errors, the Emaxt functions and the choice
probabilities have closed form solutions.
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- The extreme value assumption is problematic in the labor force
participation model. For there to be a closed form solution to the
DCDP problem, both the preference shock and the wage shock
must be extreme value.
- Could modify the problem so that (a) the wife’s wage offer is
not observed at the time that the participation decision is made
or (b) the wage is deterministic (but varies over time and across
women due to measurement error).
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-Then, by adding an independent type-1 extreme value error to
the utility when the wife works, the participation decision rule will
depend on the difference in two taste errors.
- In either case, there is no longer a selection issue with respect
to observed wages.
- When the observed wage shock is independent of the
participation decision, the wage parameters can be estimated by
adding the wage density to the likelihood function for
participation and any distributional assumption, (e.g. log
normality) can be assumed.
- Whether the model assumptions necessary to take advantage of
the computational gains from adopting the extreme value
distribution are warranted raises the issue how models should be
judged and which model is "best."
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Unobserved State Variables:
- We would like to be able to relax the assumption of shocks
being independent of past shocks.
- It is common to assume that shocks have a
permanent-transitory structure (HeckmanSinger, 1981,
KeaneWolpin, 1997), where the permanent component takes on
a discrete number of values and follows a joint multinomial
distribution:

εit =
M∑

mh=1

M∑
mw=1

λ1mhmw1(typeh = mh, typew = mw) + ω1it,

ηit =
M∑

mw=1
λ2m1(typew = mw) + ω2it.

where there are M types each of husbands (h) and wives (w),
and thus M2 couple types and where ω1it and ω2it are joint
normal and iid over time.
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- A couple is assumed to know their own and their spouse’s type,
so the state space is augmented by the husband’s and wife’s type
(or could impose assumption that they are the same types).
- Even though researcher does not know types, it is convenient to
add them to the state variables in what we previously defined as
the observable elements of the state space, Ω−it .
- The dynamic programming problem must be solved for each
couple’s type.

Todd DCDP Models 65/118



Likelihood with unobserved types

- The likelihood function modified to account for the unobserved
types.
- Letting L(mw,mh) be the likelihood function for a type (mw,mh)
couple.
- The sample likelihood is the product over individuals of the type
probability weighted sum of the type-specific likelihoods:

∏
i

Li =
M∑

mw=1

M∑
mh=1

πmwmhL
i
(mw,mh). (28)
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-Another possibility is to assume the joint error process follows an
ARIMA process. Suppose the errors follow a AR(1)process:
εi,t = ρeεi,t−1 + ω1it and ηit = ρηηi,t−1 + ω2it,
where ω1it and ω2it are joint normal and iid over time.
- Consider again the alternative-specific value functions at t,
where we now explicitly account for the evolution of the shocks:

V kt (Ω−it , εit, ηit) = Ukit(Ωit) + δE[Vt+1(Ω−i,t+1, εit+1, ηit+1)|Ω−it , εit, ηit, dit = k] (29)

= Ukit(Ωit) + δE[Vt+1(Ω−i,t+1, ρeεit + ω1it+1, ρηηit + ω2it+1)|Ω−it , εit, ηit, dit = k],

the integration is taken over the joint distribution of ω1it+1 and
ω2it+1
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- The Emaxt+1 function includes not only Ω−i,t+1, as previously
specified, but also the shocks at t, εit and ηit.
- Serial correlation augments the state space that enters the
Emaxt functions.
- The main complication is that these state space elements,
unlike those we had so far, are continuous variables.
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The Curse of Dimensionality:

- The solution of the dynamic programming problem required
that the Emaxt functions be calculated for each point in the
state space.
- If z and κ take on only a finite number of discrete values (e.g.,
years of schooling, number of children), the solution involves
solving for the Emaxt functions at each point in the state space
- If either z or κ contains a continuous variable (or if the shocks
follow an ARIMA process), one cannot solve the dynamic
programming problem at every state point.

Todd DCDP Models 69/118



- One could also imagine making the model more complex in
ways that would increase the number of state variables and hence
the size of the state space (e.g. including ages of children).
- The state space grows exponentially with the number of state
variables. This is the curse of dimensionality first associated with
Bellman (1957).
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- Estimation requires solving the dynamic programming problem
many times for each trial parameter vector considered in the
search for the maximum of the likelihood function (and perhaps
at many nearby parameter vectors, in order to obtain gradients).
- Two main ways to make calculation of the DP problem feasible:
(a) keep the model simple so state space is small, or (b) abandon
"exact" solutions to DP problems in favor of approximate
solutions that can be obtained with greatly reduced
computational time.
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There are three main approximate solution methods that have
been discussed in the literature:
1. Discretization: discretize the continuous variables and solve
for the Emaxt functions on the grid of discretized values. Either
(i) modify the law of motion for the state variables so they stay
on the discrete grid, or
(ii) use a method to interpolate between grid points.
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2. Approximation and interpolation of the Emaxt functions:
approach was originally proposed by Bellman, Kalaba and Kotkin
(1963) and extended to the type of models generally of interest
by Keane and Wolpin (1994).
-Applicable when the state space is large either due the presence
of continuous state variables or a large number of discrete state
variables (or both).
- The Emaxt functions are evaluated at a subset of the state
points and some method of interpolation is used to evaluate
Emaxt at other values.
- Requires that the Emaxt interpolating functions be
parametrically specified.
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3. Randomization: developed by Rust (1997). Applicable when
the state space is large due the presence of continuous state
variables.
- Requires that choice variables be discrete and state variables be
continuous.
- Rust (1997) shows that solving a random Bellman equation can
break the curse of dimensionality in the case of DCDP models in
which the state space is continuous and evolves stochastically,
conditional on the alternative chosen.
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- Suppose that we modeled work experience as a continuous
random variable with conditional density function
p(ht+1|ht, dt) = p(ht + jI(dt = 1)− jI(dt = 0)|ht, dt) where j is
random variable indicating the extent to which working
probabilistically augments work experience or not working
depletes effective work experience (due to depreciation of skills).
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The random Bellman equation (ignoring z and κ), is

V̂Mt(ht) = max
dt

[
Udtt (ht) +

δ

M

M∑
m=1

V̂M,t+1(ht+1,m|ht, dt)p(ht+1,m|ht, dt)

]
, (30)

where [ht+1,1, ..., ht+1,M ] = [h1, ..., hM ] are M randomly drawn
state space elements.
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- The approximate value function V̂Mt(ht) converges to Vt(ht) as
M →∞ at a

√
M rate.

- This also true if (ht) is a vector of state variables.
- The above approach only delivers a solution for the value
functions on the grid [h1, ..., hM ]. Evaluating the likelihood will
usually require values at other points.
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- A key point is that V̂Mt(ht) is (in Rust’s terminology)
self-approximating.
- Suppose we wish to construct the alternative specific value
function V̂ dt

Mt
(ht) at a point ht that is not part of the grid

[h1, ..., hM ].
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Form:

V̂ dt
Mt

(ht) = Udt
t (dt) + δ

M∑
m=1

V̂Mt(hm) p(hm|ht, dt)∑M
k=1 p(hk|ht, dt)

.

- Because any state space element at t+ 1 can be reached from
any element at t with some probability given by p(·| ht, dt), the
value function at t can be calculate at any element of the state
space at t.
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Comparison of different approaches

- For any given application with a given number of state variables
it is an empirical question whether methods based on
discretization, approximation/interpolation or randomization will
produce a more accurate approximation in given computation
time.
- Stinebrickner(2000) compares several approximation methods in
the context of a DCDP model with serially correlated shocks.
- more work is needed to understand which methods perform
best and in what contexts.
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The Multinomial DCDP Problem

Extend that model to allow for:
(i) additional choices
(ii) non-additive errors
(iii) general functional forms and distributional assumptions.
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- One can simply allow the number of mutually exclusive
alternatives, and thus the number of alternative-specific value
functions to be greater than two.
-For example, if there are K > 2 mutually exclusive alternatives,
there will be K − 1 latent variable functions (relative to one of
the alternatives, arbitrarily chosen).
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- Consider the extension of DCDP models to the case with
multiple discrete alternatives by augmenting the dynamic labor
force participation model to include a fertility decision in each
period.
- In addition, allow the couple to choose among four labor force
alternatives for the wife.
- Drop the assumption that errors are additive and normal (which
would be unusual for wages)
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Richer Model of LFP and Fertility Choices

• Consider a sample of white married women (in their first
marriage) taken from the 1979-2004 rounds of the NLSY79.
Ages at marriage range from 18 to 43, with 3/4ths of these
first marriages occurring before the age of 27.

• Adopt, as is common in labor supply models, a discrete period
length of a year.

• The participation measure consists of four mutually exclusive
and exhaustive alternatives, working less than 500 hours
during a calendar year (d0

it = 1), working between 500 and
1499 hours (d1

it = 1), working between 1500 and 2499 hours
(d2
it = 1) and working more than 2500 hours (d3

it = 1).
• Fertility is the dichotomous variable indicating whether or not
the woman had a birth during the calendar year.
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Approximate decision rules

- It is often useful to estimate the relationship between the choice
variables (hours worked, fertility) and the state variables, just to
make sure that they are related in the way you might expect.
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-Let the married couple’s per-period utility flow include
consumption (cit), a per-period disutility from each working
alternative and a per-period utility flow from the stock of
children (Nit).
-The stock of children includes a newborn, that is a child born at
the beginning of period t (nit = 1).

Uit = U(cit, d1
it, d

2
it, d

3
it, Nit; ε1itd1

it, ε
2
itd

2
it, ε

3
itd

3
it, ε

N
itNit) (31)

where the ε1it, ε2it, ε3it, and εNit are time-varying preference shocks
that are assumed to be mutually serially uncorrelated.
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Because the stock of children at t includes a newborn, the utility
of a newborn is subject to the εNit shock.
Allowing for unobserved heterogeneity, the type specification is

εjit =
M∑

mh=1

M∑
mw=1

λj1m1(typeh = mh, typew = mw) + ωj1it,

j=1,2,3,N, (32)

where the ωj′s are mutually serially independent shocks.

Todd DCDP Models 87/118



- The household budget constraint incorporates a cost of
avoiding a birth (contraceptive costs, b0, which, for biological
reasons, will be a function of the wife’s age (her age at marriage,
aw0 , plus the duration of marriage, t) and (child) age-specific
monetary costs of supplying children with consumption goods
(b1k) and with child care if the woman works (b2k per work hour).
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- Household income=sum of husband’s earnings (yit)and wife’s
earnings, the product of an hourly wage (wit) and hours worked
(1000 hours if d1

it = 1, 2000 hours if d2
it, 3000 hours d3

it = 1).

cit = yit + wit(1000d1
it + 2000d2

it + 3000d3
it)

− b0(aw0 + t)(1− nit)−
K∑
k=1

b1kNkit

−
K∑
k=1

b2kNkit(1000d1
it + 2000d2

it + 3000d3
it)

where Nkit are the number of children in K different age classes,
e.g., 0-1, 2-5, etc.
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The wife’s wage offer function depends on her level of human
capital, Ψit, assumed to be a function of the wife’s completed
schooling (Swi ),, the number of hours worked up to t, Eit and on
the number of hours worked in the previous period:

logwit =
3∑
j=1

log rjdjit + log Ψit(Swi , Eit, d1
it−1, d

2
it−1, d

3
it−1; ηwit),

ηwit =
M∑

mw=1
λ2mw1(typew = mw) + ωw2it

where the rj are (assumed to be time-invariant) competitively
determined skill rental prices that may differ by hours worked and
ηwit is a time varying shock to the wife’s human capital following
a permanent (discrete type)-transitory scheme.
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Husband’s earnings (assumed to work full-time):

log yit = log rh + log Ψh
it(Shi , aht ; ηhit),

ηhit =
M∑

mh=1
λh2mh1(typeh = mh) + ωy2it.

where Shi is the husband’s schooling and aht = ah0 + t is his age at
t (his age at marriage plus t).
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The time-varying state variables, the stock of children (older
than one) of different ages, the total stock of children and work
experience, evolve according to:

N2it =
t−5∑
j=t−1

nij;N3it =
t−17∑
j=t−6

nij;Nit = Nit−1 + nit, (33)

Eit = Eit−1 + +1000d1
it−1 + 2000d2

it−1 + 3000d3
it−1. (34)

The state variables in Ω−t , augmented to include type, consist of
the stock of children (older than one) of different ages, the wife’s
work experience and previous period work status, the husband’s
and wife’s age at marriage, the husband and wife’s schooling
levels and the couple’s type.
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The choice set during periods when the wife is fecund, assumed
to have a known terminal period (tm), consists of the four work
alternatives plus the decision of whether or not to have a child.
-There are thus eight mutually exclusive choices,
dhnit = {d00

it , d
10
it , d

20
it , d

30
it , d

01
it , d

11
it , d

21
it , d

31
it : t = 1, ..., tm − 1},

where the first superscript refers to the work choice
(h = {0, 1, 2, 3}) and the second to the fertility choice
(n = {0, 1})
-When the wife is no longer fecund, nit = 0 and the choice set
consists only of the four mutually exclusive alternatives,
dhnit = {d00

it , d
10
it , d

20
it , d

30
it : t = tm, ..., T}.
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- Couples choose the alternative at each t that maximizes the
remaining expected discounted value of lifetime utility.
- Defining Uhn

it to be the contemporaneous utility flow for the
work and fertility choice, the value functions are:

V hn
t (Ωit) = Uhn

it (Ωit) + δE[Vt+1(Ωi,t+1)|Ω−it , dhnit ] for t < T,
(35)

= Uhn
iT (ΩiT ) for t = T (36)

where, letting Ṽ hn
t be the vector of alternative specific value

functions relevant at period t,

Vt(Ωit) = max(Ṽ hn
t (Ωit)), (37)

and where the expectation is taken over the joint distribution of
the preference and income shocks, f(ω1

1t, ω
2
1t, ω

3
1t, ω

N
1t , ω

w
2t, ω

y
2t).
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Model solution

• The model is solved by backwards recursion.
• The solution requires, as in the binary case, that the Emaxt
function be calculated at each state point and for all t.

• Here, the Emaxt function is a six-variate integral (over the
preference shocks, the wife’s wage shock and the husband’s
earnings shock.

• The state space at t consists of all feasible values of
Eit, d

1
it−1, d

2
it−1, d

3
it−1, S

w, Sh, Nit−1, Nkit

(k = 2, 3), ah0 , aw0 , typeh, typew.
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• All of the state variables are discrete and the dimension of the
state space is therefore finite, but large.

• To track the number of children in each of the three age
groups, it is necessary to keep track of the complete sequence
of births. If a woman has 30 fecund periods, the number of
possible birth sequences is 230 = 1, 073, 700, 000.

• Full solution of the dynamic programming problem is infeasible,
leaving aside the iterative process necessary for estimation.
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• It is thus necessary to use an approximation method for
solving for the Emaxt functions.

• Here is an interpolation method based on regression. Consider
first the calculation of the Emax T for any given state space
element. At T the woman is no longer fecund, so we need to
calculate

Emax T = ET−1 max(U00
T (ω̃), U10

T (ω̃), U20
T (ω̃), U30

T (ω̃)),
(38)

where ω̃ is the six-tuple vector of shocks.
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• This is a six-variate integration and Emax T must be
calculated numerically. A straightforward method is Monte
Carlo integration.

• Letting ω̃d be the dth random draw, d = 1, ..., D, from the
joint distribution, f(ω1

1, ω
2
1, ω

3
1, ω

N
1 , ω

w
2 , ω

h
2 ), an estimate of

Emax T at say the kth value of the state space in Ω−T , Ω−Tk, is

̂Emax Tk =
1
D

D∑
d=1

max[U00
T (ω̃d; Ω−

Tk
), U10

T (ω̃d; Ω−
Tk

), U20
T (ω̃d; Ω−

Tk
), U30

T (ω̃d; Ω−
Tk

)]

(39)
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• Suppose one randomly draws KT state points (without
replacement) and calculates the Êmax T function for those
KT state space elements.

• Can treat these KT values as a vector of dependent variables
in an interpolating regression

̂Emax Tk = gT (Ω−Tk; γT ) + ςT ,

where γT is a time T vector of regression coefficients and
gT (·; ·) is a flexible function of state variables.

• With this interpolating function, estimates of the Emax T

function can be obtained at any state point in the set Ω−T .

Todd DCDP Models 99/118



• Given Êmax T , we can calculate V hn
T−1 at a subset of the state

points in Ω−T−1.

• Using the D draws from f(ω̃), the estimate of EmaxT−1 at
the kth state space element is

̂Emax T−1,k = 1
D

D∑
d=1

max[V 00
T−1(ω̃d; Ω−T−1,k), V 10

T−1(ω̃d; Ω−T−1,k),

V20
T−1(ω̃d; Ω−T−1,k ), V 30

T−1(ω̃d; Ω−T−1,k)](40)
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Using the ̂Emax T−1,k calculated for KT−1 randomly drawn state
points from Ω−T−1 as the dependent variables in the interpolating
function:

̂Emax T−1,k = gT−1(Ω−T−1,k; γT−1) + ςT−1, (41)

provides estimated values for the Emax T−1 function at any
state point in the set Ω−T−1.
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• Continuing this procedure, we can obtain the interplolating
functions for all of the Êmaxt functions.

• At some time period, the choice set will include the birth of a
child.
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Likelihood estimation

• In the binary case with additive normal errors, the cut-off
values for the participation decision, which were the ingredients
for the likelihood function calculation, were analytical.

• In the multinomial choice setting, the set of values of the ω
vector that determine optimal choices and that serve as limits
of integration in the probabilities associated with the work
alternatives that comprise the likelihood function have no
analytical form and the likelihood function requires a
multivariate integration.

• Maximum likelihood estimation of the model uses simulation
methods.
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To describe the procedure, let the set of values of ω̃t for which
the hnth choice is optimal at t be denoted by
Shnt (Ω−it) = {ω1

1t, ω
2
1t, ω

3
1t, ω

N
1t , ω

w
2t, ω

y
2t|V hn

t = max(Ṽ hn
t )}.

Consider the probability that a couple chooses neither to work
nor have a child, hit = 0, nit = 0, in a fecund period t < tm :

Pr(hit = 0, nit = 0|Ω−it) =
∫

S00
t

(Ω−
it

)

f(ω1
1t, ω

2
1t, ω

3
1t, ω

N
1t , ω

w
2t, ω

y
2t)dω

1
1tdω

2
1tdω

3
1tdω

N
1tdω

w
2tdω

y
2t.

(42)
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This integral can be simulated by randomly taking m = 1, ...M
draws from the joint distribution of ω, with draws denoted by
ωmt, and determining the fraction of times that the value
function for that alternative is the largest among all eight feasible
alternatives, that is,

P̂r(hit = 0, nit = 0|Ω−it) = 1
M

M∑
m=1

I[V 00
it (ω̃mt) = max(Ṽ hn

mt (Ω−it))],

(43)
where I(·) is the indicator function equal to one if the statement
is true and zero otherwise.
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Similarly, form an estimate of the probability for other non-work
alternatives, namely for hit = 0, nit = 1 for any t < tm and for
hit = 0 for any tm ≤ t ≤ T.

When the wife works, the relevant probability contains the
chosen joint alternative {h, n} and the observed wage. Consider
the case where hit = 2, nit = 1 Likelihood contribution for an
individual who works 2000 hours in period t at a wage of wit is

Pr(hit = 2, nit = 1, wit|Ω−it) = Pr(hit = 2, nit = 1|wit,Ω−it) Pr(wit|Ω−it)

(44)

= Pr(wit|Ω−it)
∫

S21
t (Ω−it)

dF (ω1
1t, ω

2
1t, ω

3
1t, ω

N
1t , ω

y
2t|ωw2t).
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Suppose that the (log) wage equation is additive in ηwit ,

logwit =
3∑
j=1

log rjdjit + log Ψit(Swi , Eit, d1
it−1, d

2
it−1, d

3
it−1) + ηwit ,

=
3∑
j=1

log rjdjit + log Ψit(Swi , Eit, d1
it−1, d

2
it−1, d

3
it−1)

+
M∑

mw=1
λ2mw1(typew = mw) + ωw2it

and further that ω̃ is joint normal.
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Denoting the deterministic part of the RHS by logwit, we can
write

Pr(hit = 2|wit,Ω−it) Pr(wit|Ω−it) (45)

=
∫

S21
t (Ω−it)

dF (ω1
1t, ω

2
1t, ω

3
1t, ω

N
1t , ω

y
2t|ωw2t = logwit − logwit)

× 1
witσωw2

φ

(
logwit − logwit

σωw2

)

where 1
wit

is the Jacobian of the transformation from the
distribution of w to the distribution of ωw2 .
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Under our assumptions f(ω1
1t, ω

2
1t, ω

3
1t, ω

N
1t , ω

y
2t|ωw2t) is normal and

the frequency simulator for the conditional probability is the same
as previously, except that ωw2t is set equal to

logwit −
3∑
j=1

log rjdjit + log Ψit +∑M
mw=1 λ2mw1(typew = mw)

and the other five ω′s are drawn from f(ω1
1, ω

2
1, ω

3
1, ω

N
1 , ω

y
2 |ωw2 ).

Denoting the fixed value of ωw2t as ω̂w2t,

Pr(hit = 2, nit = 1|wit,Ω−it) (46)

= 1
M

M∑
m=1

I[V 21
it (ω1

m1, ω
2
m1, ω

3
m1, ω

N
m1, ω

y
m2, ω̂

w
mt) (47)
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• Although these frequency simulators converge to the true
probabilities as M →∞,there are some practical problems.

• Even for large M, the likelihood is not smooth in the
parameters, which precludes the use of derivative methods
(e.g., BHHH) in maximizing the likelihood and also makes the
use of non-derivative methods less efficient.

• Frequency simulators can be smoothed to make the likelihood
function differentiable and improve the performance of
optimization routines.

Todd DCDP Models 110/118



Smoothed logit simulator

• One example is the smoothed logit simulator (McFadden
(1989)):

Pr(hit = 2, nit = 1|wiτ ,Ω−it) =
1
M

M∑
m=1

exp
[

(V 21
itm −max(Ṽ hnitm))/τ

]
∑
{h,n}

exp
[

(V hnitm −max((Ṽ hnitm))/τ
] (48)

where V hn
itm is shorthand for the value functions and τ is a

smoothing parameter.
• As τ → 0, the RHS converges to the frequency simulator.
• The other choice probabilities associated with work
alternatives are similarly calculated.
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Alternative Estimation Approaches

• In addition to simulated maximum likelihood, researchers have
used varying alternative simulation estimation methods,
including minimum distance estimation, simulated method of
moments and indirect inference.

• The main limiting factor in estimating DCDP models is the
computational burden associated with the iterative process.

• There have been some approaches to reduce the
computational burden.

Todd DCDP Models 112/118



Hotz and Miller (1993)

• Developed a semi-parametric method for the implementation
of DCDP models when errors are additive that does not
involve solving the DP model, that is, calculating the Emaxt
functions.

• HM prove that the Emaxt functions can be written solely as
functions of conditional choice probabilities and state variables
for any joint distribution of additive shocks.

• The method doesn’t require that errors be extreme value, the
computational advantage best exploited with that assumption.
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Consider again the binary choice model. If we have an estimate
of the conditional choice probabilities at all state points, EmaxT
can also be calculated at all state points.
Denoting the (estimate of the) conditional choice probability by
P̂r(diT = 1|Ω−iT ),

Êmax T = ρ

{
γ + yT + zγ1 + γ2hT − πn

ρ
− log(P̂r(diT = 1|Ω−iT )

}
(49)
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Consider now period T − 1 and suppose we have an estimate of
the conditional choice probabilities, P̂r(diT−1 = 1|Ω−iT−1). Then,

Emax T−1 = ρ

{
γ +

yT−1 + zγ1 + γ2hT−1 − πn+ δÊmax T (hT−1 + 1)
ρ

−

log(P̂r(diT−1 = 1|Ω−iT−1)}

where, for convenience, we have included only work experience in
the ÊmaxT function.
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We can continue substituting the estimated conditional choice
probabilities in this recursive manner, yielding at any t

Êmax t = ρ

{
γ +

yt + zγ1 + γ2ht − πn+ δÊmaxt+1(ht + 1)
ρ

− log(P̂r(dit = 1|Ω−it)
}

These Êmax t functions can be used in determining the ξ∗it(Ω−it)
cut-off values that enter the likelihood function.
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• The empirical strategy involves estimating the conditional
choice probabilities from the data (non-parametrically if the
data can accommodate it).

• The CCPs correspond to the proportion of women who work
for given values of the state variables (for example, work
experience).

• Need estimates of the CCPs through the final decision period
and for each possible value of the state space.

• Need longitudinal data that either extends to the end of the
decision period or assume can be obtained from synthetic
cohorts.
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• it must also be assumed that there are no state variables
observed to the agent but unobserved to us; Arcidiacono and
Miller (2007) have developed methods for extending the HM
approach to allow for unobserved state variables.

• The convenience additive e.v. errors brings with it the
limitations of that assumption previously discussed.

• For policy evaluation, we often need the distributions of the
unobservables which are here not estimated.
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