The Gender Unemployment Gap: Trend and Cycle

Stefania Albanesi, Federal Reserve Bank of New York, NBER
Ayşegül Şahin, Federal Reserve Bank of New York

Family Inequality Workshop: November 15, 2012
The Gender Unemployment Gap

The gender unemployment gap was positive until 1980.

After 1980, the gender unemployment gap virtually disappeared, except for recessions, when men’s unemployment rate exceeds women’s.
Hypothesis and Findings

▶ Our hypothesis is that the decline in the gender unemployment gap was due to a convergence in labor market attachment by gender.

▶ We find that the convergence in labor force attachment by gender played an important role in the trend decline of the gender unemployment gap.

 ▶ Convergence in the age and skill distribution by gender play a minimal role.

▶ Gender differences in unemployment over the business cycle have been stable:

 ▶ Gender differences in industry composition can explain most gender differences in unemployment during recent recessions, but not during recoveries.
Outline

- Evidence
- Composition explanations
- Model
- Quantitative analysis
- International evidence
- Cyclical analysis
Evidence
Convergence in Labor Force Attachment

- **Rise in female attachment:**
 - Female LFP rose from 43% in 1970 to 60% in 2000.
 - Women historically experienced more frequent spells of non-participation (Royalty, 1998), especially in childbearing years (Goldin, 1990). They are now less likely to experience non-participation spells in conjunction with childbirth (Census Bureau 2008).

- **Decline in male attachment:**
 - LFP of men declined from 80% in 1970 to 75% in 2000.
 - Full time non-employment of prime age men declined (Juhn, Murphy and Topel, 2002 and Autor and Duggan, 2003).
Convergence in Labor Force Attachment

Labor Force Participation By Gender

<table>
<thead>
<tr>
<th>Date</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>1978</td>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td>1986</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>1994</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>2002</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>2010</td>
<td>55</td>
<td>65</td>
</tr>
</tbody>
</table>
Flow rates involving the participation decision for men and women have steadily converged (Abraham and Shimer, 2002).

- NE ↑ and EN ↓ for women relative to men ⇒ E ↑ for women relative to men.
- NU ↓ and UN ↑ for men relative to women ⇒ U ↑ for women relative to men.

There has been no systematic convergence in flow rates between employment and unemployment.
Convergence in Flow Rates

Flow rates involving the participation decision for men and women have steadily converged (Abraham and Shimer, 2002).

- NE ↑ and EN ↓ for women relative to men ⇒ E ↑ for women relative to men.
- NU ↓ and UN ↑ for men relative to women ⇒ U ↑ for women relative to men.

There has been no systematic convergence in flow rates between employment and unemployment.

The gender unemployment gap declines because the effect on E prevails, and E/U rises:

$$u = \frac{U}{E + U} = \frac{1}{\frac{E}{U} + 1}$$
Other Contributing Factors: Composition of the Labor Force

- Well-documented patterns for unemployment:
 - Skill: Low-skilled workers tend to have higher unemployment rates.
 - Age: Younger workers tend to have higher unemployment rates
 [Mincer (1991), Shimer (1998)]

- Female workers were relatively younger and less educated earlier
 \implies higher female unemployment rate
Average Age and Education by Gender

- Female workers were younger and relatively less educated earlier.
Can Age and Skill Composition Explain the Evolution of the Gap?

► Unemployment rate at month t for women is:

$$u_{f,t} = \sum_s u_{s,f,t} \frac{L_{s,f,t}}{L_{f,t}}$$

where $u_{s,f,t}$ is the unemployment rate for group s and $L_{s,f,t}/L_{f,t}$ is labor force share of group s for women at month t.

► To isolate the effect of composition, we calculate a counterfactual unemployment rate for women:

$$u_{f,t}^C = \sum_s u_{s,f,t} \frac{L_{s,m,t}}{L_{m,t}}$$

where $L_{s,m,t}/L_{m,t}$ is the share of group s for men.

► Age groups: $\{16 - 24, 25 - 54, 55+\}$

► Skill Groups: $<$HS, HS, Some college, College$+$ for age 25$+$
Can Age and Skill Composition Explain the Evolution of the Gap?

\[u_t = X_{i \text{Age}} l_{i \text{Skill}} (u) \]

where \(s_2 \{ \text{m, f} \} \). We then calculate a counterfactual unemployment rate, \(\tilde{u}_t \), for women by assuming that the age composition of the female labor force were the same as men’s, i.e., \(l_{t \text{f}} (i) = l_{t \text{m}} (i) \).

\[\tilde{u}_t = X_{i \text{Age}} A_{t \text{f}} (l_{t \text{m}} (i)) u_{t \text{f}} (i) \]

Figure 4 shows both the actual and counterfactual female unemployment rates against the male unemployment rate. Since the female labor force before 1990 was younger than the male labor force, the counterfactual female unemployment rate lies below the actual female unemployment rate. However, this effect is clearly not big enough to explain the gender gap in unemployment rates. After 1990, since the age difference disappears, there is no difference between the actual and counterfactual unemployment rates.

2.2 Education Composition

Another compositional issue is the difference between the skill levels of men and women. Figure 5 shows the male-female ratio of average years of schooling for workers 25 years of age and older. To compute this ratio, we divide the labor force into four education groups, \(A_{\text{Education}} \) = \{less than a high school diploma, high school diploma, some college, college degree\}. We impose this age restriction since we are interested in completed educational attainment. Consequently, the unemployment rates in Figure 5 are different from the overall unemployment rates.

2.3 Industry Composition

There have always been considerable differences between the distribution of female and male workers across different industries. Figure 7 shows the fraction of male and female workers employed in the goods-producing, service-providing, and government sectors. In general, goods-producing industries, like construction and manufacturing, employ mostly male workers while most female workers work in the service-providing and government sectors.

- Small quantitative effect of gender differences in age and skill composition
Can the Industry Composition Explain the Evolution of the Gap?

We calculate a counterfactual unemployment rate for women by assigning the male industry composition to the female labor force to isolate the role of industry distributions. Figure 8 shows both the actual and counterfactual female unemployment rates against the male unemployment rate. The industry composition does not affect the evolution of trend unemployment rates. However, its impact is important during recessions. If women had men's industry distribution, their unemployment rate would have gone up more during the recessions. If we focus on the three most recent downturns, which occurred after male and female unemployment rates converged, industry composition explains more than half of the gender gap during the recessions. As for the 1981-82 recession, the counterfactual predicts that the female unemployment rate would have been higher if women's employment patterns were similar to men's.

Unemployment Rate

Date

0.125
0.1
0.075
0.05
0.025

Men Women Counterfactual

Figure 8: Actual and Counterfactual Unemployment Rates (Industry). Source: Bureau of Labor Statistics.

We conclude that gender differences in age, skill, and industry composition cannot account for the evolution of the gender unemployment gap. However, we find that industry distribution plays an important role in explaining cyclical patterns.

Our Hypothesis: Increase in Women's Labor Force Attachment

Our hypothesis is that the evolution of the gender unemployment gap was due to the rise in women's labor market attachment. Women were less attached to the labor force in the 70s. This low attachment manifested itself in two different dimensions. First, among working age women a higher fraction was not in the labor force (Goldin, 1990). Second, those who ever participated in the labor force experienced more frequent spells of nonparticipation, as documented by Royalty (1998).

Higher share of men in goods producing sector.

Industry composition explains approximately half of the gender gap in unemployment during recessions.
Can the Occupational Distribution Explain the Evolution of the Gap?

- Higher share of men in production occupations, and of women in sales and office occupations.
- Relatively high unemployment rates for women in production occupations.
Model
Model

- 3-state search model of the labor market:
 - Male and female individuals
 - Skill heterogeneity: skilled (college graduate), unskilled (less than college)
 - Opportunity cost of work, x, stochastic, differs by gender to reflect differences in home production opportunities
 - x distribution is Pareto, $F_j(x)$ for $j = f, m$, iid
The flow values depend on agents’ realized value of opportunity cost of work \(x \) and their labor market status.

- **Worker:**
 \[
 \nu_{ij}^{W}(x) = w + (1 - e)x
 \]

- **Unemployed:**
 \[
 \nu_{ij}^{S}(x) = (1 - s)x
 \]

- **Non-participant:**
 \[
 \nu_{ij}^{H}(x) = x
 \]

for \(i = s, u \) and \(j = f, m \)

where
- \(w \) is the wage,
- \(e \in (0, 1] \) is the fraction of time devoted to market work if E,
- \(s \in [0, 1] \) is the fraction of time devoted to job search if U.
Employed agents may experience an exogenous separation shock δ_{ij}.

Unemployed agents may receive a job offer with probability p_{ij}.

Each individual draws a new value of opportunity cost of work in each period with probability λ_{ij}.

The opportunity cost of work, separation and job finding shocks are all realized at the same time before the agents make any decisions.
Agents’ Decisions

- **Value functions:**
 - Employed: $W_{ij}(x)$
 - Unemployed: $S_{ij}(x)$
 - Out of the labor force: $H_{ij}(x)$

- **Employed:**

\[
W_{ij}(x) = v_{ij}^{W}(x)
+ (1 - \lambda_{ij})\beta \left[(1 - \delta_{ij})W_{ij}(x) + \delta_{ij} \max \{ S_{ij}(x), H_{ij}(x) \} \right]
+ \lambda_{ij}\beta \int_{x_{ij}}^{\tilde{x}_{ij}} \left[(1 - \delta_{ij}) \max \{ W_{ij}(x'), S_{ij}(x'), H_{ij}(x') \} + \delta_{ij} \max \{ S_{ij}(x'), H_{ij}(x') \} \right] dF_{j}(x')
\]
Agents’ Decisions

Value functions:

- **Employed:** $W_{ij}(x)$
- **Unemployed:** $S_{ij}(x)$
- **Out of the labor force:** $H_{ij}(x)$

Employed:

$$W_{ij}(x) = v^W_{ij}(x) + (1 - \lambda_{ij})\beta \left[(1 - \delta_{ij})W_{ij}(x) + \delta_{ij} \max \{S_{ij}(x), H_{ij}(x)\} \right]$$

$$+ \lambda_{ij}\beta \int_{x_j}^{x_j} \left[(1 - \delta_{ij})\max \{W_{ij}(x'), S_{ij}(x'), H_{ij}(x')\} + \delta_{ij} \max \{S_{ij}(x'), H_{ij}(x')\} \right] dF_j(x')$$
Agents’ Decisions

► Unemployed:

\[S_{ij}(x) = \nu^S_{ij}(x) \]
\[+ (1 - \lambda_{ij}) \beta \left[p_{ij} \ast \max \{ W_{ij}(x), S_{ij}(x) \} + (1 - p_{ij}) S_{ij}(x) \right] \]
\[+ \lambda_{ij} \beta \int_{\bar{x}_j}^{\bar{x}_j} \left[p_{ij} \ast \max \{ W_{ij}(x'), S_{ij}(x'), H_{ij}(x') \} + (1 - p_{ij}) \max \left\{ S_{ij}(x'), H_{ij}(x') \right\} \right] dF_j(x') \]

► Out of the labor force:

\[H_{ij}(x) = \nu^H_{ij}(x) + (1 - \lambda_{ij}) \beta H_{ij}(x) \]
\[+ \lambda_{ij} \beta \int_{\bar{x}_j}^{\bar{x}_j} \max \left\{ S_{ij}(x'), H_{ij}(x') \right\} dF_j(x') \]
Agents’ Decisions

- Unemployed:

\[S_{ij}(x) = v_{ij}^S(x) \]
\[+ (1 - \lambda_{ij}) \beta \left[p_{ij} \ast \max \{ W_{ij}(x), S_{ij}(x) \} + (1 - p_{ij})S_{ij}(x) \right] \]
\[+ \lambda_{ij} \beta \int_{x_j}^{x_j} \left[p_{ij} \ast \max \{ W_{ij}(x'), S_{ij}(x'), H_{ij}(x') \} + (1 - p_{ij})\max \{ S_{ij}(x'), H_{ij}(x') \} \right] dF_j(x') \]

- Out of the labor force:

\[H_{ij}(x) = v_{ij}^H(x) + (1 - \lambda_{ij}) \beta H_{ij}(x) \]
\[+ \lambda_{ij} \beta \int_{x_j}^{x_j} \max \{ S_{ij}(x'), H_{ij}(x') \} dF_j(x') \]
Firms

- Firms post vacancies to hire workers. There is free entry.
 - Unemployed workers meet firms according to a matching function, $M(u; v)$.
 - If a firm is matched with a worker, the worker produces in that period.
 - Next period, the worker may quit or the job may be exogenously destroyed.
Wage Determination Mechanism

- Labor markets are segmented by skill.
- Individual opportunity cost of work, x, private information. Distribution of x by gender publicly known.
- Male wages are set by standard surplus splitting scheme within each skill group.
- We consider several alternatives for female wages:
 - Benchmark: Female wages set to render firms indifferent between hiring workers of a given skill level $\implies p_{if} = p_{im}$.
 - Alternatives: Labor markets segmented by skill and gender.
 - Surplus splitting by skill and gender, with same bargaining power.
 - Exogenous gender wage gap.
 - Different bargaining power, set to match the gender wage gap.
Firms

- **Value of a filled job:**

\[
J_{ij} = y_i - w_{ij} + \beta \left\{ \int_{\bar{x}_j}^{\min\{x_{ij}^q, x_{ij}^a\}} \left[(1 - \delta_{ij})J'_{ij} + \delta_{ij}V_i \right] dF_j(x') + \int_{\min\{x_{ij}^q, x_{ij}^a\}}^{\bar{x}_j} V_i dF_j(x') \right\}
\]

- **Male wages solve a surplus splitting problem:**

\[
w_{im} = \arg\max_w \left[\int_{\bar{x}_m}^{\bar{x}_m} (W_{im}(x; w) - \max \{H_{im}(x), S_{im}(x)\}) dF_m(x) \right]^\gamma \left[J_{im} - V_i \right]^{1-\gamma}
\]

 - **Wages do not depend on** \(x\), which is privately observed.

- **Condition to determine female wages for benchmark case:**

\[
J_{if} = J_{im}
\]
Qualitative Implications of the Model

- Gender differences in the distribution of the opportunity cost of market work determine the gender gaps in labor force participation and unemployment in equilibrium.

- For the **benchmark** female wage determination mechanism, the gender wage gap is also endogenous:
 - Since women have greater opportunity cost of work they have higher quit rates
 \[\Rightarrow \text{lower surplus for the firm} \Rightarrow \text{lower wages}. \]

- For the other mechanisms the gender wage gap by skill is exogenous, or counterfactual for surplus splitting by skill and gender.
Quantitative Analysis
Calibration

- Monthly model, calibrated to 25+ old workers
- We choose 1978 as a base year
 - first available midpoint between unemployment trough and peak
- Parameters set based on empirical evidence:
 - Educational composition of the labor force by skill and gender
 - Other variables: time devoted to work and job search
 - Matching function parameters
- Workers’ bargaining power set equal to the elasticity of the matching function with respect to unemployment
- Remaining parameters calibrated to match:
 - participation and unemployment rates by gender, skill premium
 - EE by gender and EU rates by skill
Calibration
Parameters calibrated to match data moments

<table>
<thead>
<tr>
<th></th>
<th>(e)</th>
<th>(s)</th>
<th>(\beta)</th>
<th>(\alpha)</th>
<th>(\gamma)</th>
<th>(\mu)</th>
<th>(c)</th>
<th>(X_f)</th>
<th>(X_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.625</td>
<td>0.15</td>
<td>0.996</td>
<td>0.72</td>
<td>0.72</td>
<td>0.15</td>
<td>8.7</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pop. share</th>
<th>(\delta)</th>
<th>(\lambda)</th>
<th>(\bar{x})</th>
<th>(\kappa)</th>
<th>(y_s/y_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>Unskilled</td>
<td>0.465</td>
<td>0.0042</td>
<td>0.0096</td>
<td>9.73</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Skilled</td>
<td>0.067</td>
<td>0.0048</td>
<td>0.0123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>Unskilled</td>
<td>0.375</td>
<td>0.0084</td>
<td>0.0120</td>
<td>7.13</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Skilled</td>
<td>0.093</td>
<td>0.0042</td>
<td>0.0100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration
Data targets and model outcomes

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>Unemployment</td>
<td>0.052</td>
<td>0.034</td>
</tr>
<tr>
<td>LFP</td>
<td>0.468</td>
<td>0.788</td>
</tr>
<tr>
<td>EU Rate</td>
<td>0.010</td>
<td>0.009</td>
</tr>
<tr>
<td>EE Rate</td>
<td>0.95</td>
<td>0.98</td>
</tr>
<tr>
<td>Skill premium</td>
<td>1.49</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Skilled</th>
<th>Unskilled</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU Rate</td>
<td>0.005</td>
<td>0.010</td>
</tr>
<tr>
<td>EE Rate</td>
<td>0.98</td>
<td>0.96</td>
</tr>
</tbody>
</table>

3-state models typically have difficulty matching U-to-N flows. Garibaldi and Wasmer (2006), Krusell, Mukoyama, Rogerson, and Şahin (2010, 2011)

Some part of these flows is likely to be due to misclassification error, more so for women. (Abowd and Zellner 1985, Poterba and Summers 1986)

<table>
<thead>
<tr>
<th>True status</th>
<th>Recorded status</th>
<th>True status</th>
<th>Recorded status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>N</td>
<td>Females</td>
<td>N</td>
</tr>
<tr>
<td>U</td>
<td>7.8%</td>
<td>U</td>
<td>11.5%</td>
</tr>
<tr>
<td>E</td>
<td>0.7%</td>
<td>E</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Source: Abowd and Zellner (1985)

We introduce misclassification error to the outcomes of our model, following Abowd and Zellner (1985).
Aggregate Flow Rates: Data and Model

E: Employed
U: Unemployed
N: Not in the Labor Force
Experiment: Rise in Labor Force Attachment

- We make the following changes in our calibration to match 1996 data:
 - Composition of the population by skill and gender.
 - Productivity differences between the high skill and low skill workers to match the skill premium.
 - *EU* transition rate (same for both genders).

- We then change \bar{x}_f and \bar{x}_m to match participation rates by gender in 1996, *without* targeting unemployment.

- By matching attachment, we can fully account for the decline in the gender unemployment gap.
Experiment: Labor Force Attachment

<table>
<thead>
<tr>
<th>Labor Force Participation Rate</th>
<th>1978</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Women</td>
<td>46.8%</td>
<td>46.8%</td>
</tr>
<tr>
<td>Men</td>
<td>78.8%</td>
<td>78.8%</td>
</tr>
<tr>
<td>Gap (ppts)</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Percentage Gap</td>
<td>51.8%</td>
<td>51.8%</td>
</tr>
</tbody>
</table>
Experiment: Labor Force Attachment

The Gender Unemployment Gap

<table>
<thead>
<tr>
<th></th>
<th>1978</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>5.2%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Men</td>
<td>3.4%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Gap (ppts)</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Percentage Gap</td>
<td>41%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Data</td>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>Data</td>
<td>Model</td>
<td>Model</td>
</tr>
</tbody>
</table>
Labor Force Attachment and the Unemployment Rate

- Both E and U rise with attachment, but, as in the data, E/U rises $\implies u = \frac{1}{1+E/U}$ falls with attachment.

Figure: Sensitivity to \bar{x} for men in the calibrated model
Experiment: Other Contributing Factors

<table>
<thead>
<tr>
<th></th>
<th>LFPR</th>
<th>Unemployment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gender Gap</td>
<td>Gender Gap</td>
</tr>
<tr>
<td></td>
<td>(ppts)</td>
<td>(fraction of lfpr)</td>
</tr>
<tr>
<td>1996 Data</td>
<td>17.5</td>
<td>26.1%</td>
</tr>
<tr>
<td>Benchmark</td>
<td>17.5</td>
<td>26.1%</td>
</tr>
<tr>
<td>EU</td>
<td>29.2</td>
<td>45.3%</td>
</tr>
<tr>
<td>Skill comp.</td>
<td>31.8</td>
<td>50.3%</td>
</tr>
<tr>
<td>Skill premium</td>
<td>32.4</td>
<td>50.2%</td>
</tr>
</tbody>
</table>
Alternative Wage Setting Mechanisms
The Gender Unemployment Gap

- We calibrate the model to 1978 with the alternative wage determination mechanisms, and replicate the same exercise.

<table>
<thead>
<tr>
<th></th>
<th>Unemployment Rate</th>
<th>Gender Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>1996 Data</td>
<td>4.2%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Benchmark</td>
<td>4.5%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Surplus splitting by gender</td>
<td>4.6%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Exogenous gender wage gap</td>
<td>4.6%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Different bargaining power</td>
<td>4.6%</td>
<td>4.7%</td>
</tr>
</tbody>
</table>
Alternative Wage Setting Mechanisms
The Gender Wage Gap

- **Benchmark:**
 - Captures only a small fraction of the gender wage gap in 1978. No gender differences in wages in 1996.

- **Surplus splitting by gender:**
 - Women’s surplus conditional on the wage is smaller than men’s
 \[\Rightarrow\] Counterfactual gender wage gap, conditional on skill.

- **Exogenous female wages:**
 - Set to match empirical gender wage gap in each year.

- **Different bargaining power by gender:**
 - Set to match empirical gender wage gap in 1978
 \[\Rightarrow\] \(\gamma^f = 0.26, \gamma^m = 0.72.\)
International Evidence
Source: OECD. Participation Gap = $\frac{L_m - L_f}{L_m}$, Unemployment Gap = $\frac{u_f - u_m}{u_m}$.
International Evidence

- A decline in the gender participation gap is associated with a decline in the gender unemployment gap.
- The gender unemployment gap disappears in countries that have achieved a substantial convergence in participation by gender.
- Countries in which the current participation gap is still substantial display large gender unemployment gaps.
Cyclical Properties
Cyclical Properties

- Men experience greater job losses in recessions, causing a reverse gender unemployment gap at the unemployment peak.

- This pattern has been stable over time and is driven by greater inflows into unemployment for men.
Cyclical Properties
Industry Composition: Household Data

- Industry composition can account for approximately half of the gender gap in unemployment during recessions. (See also Shin 2000.)
Industry composition can explain virtually all the gender difference in employment change in the last three recessions, it is less important for earlier recessions.

<table>
<thead>
<tr>
<th>Recessions</th>
<th>Men Actual</th>
<th>Women Actual</th>
<th>Women Counterfactual</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1969-12/1970</td>
<td>-1.35%</td>
<td>+0.69%</td>
<td>-0.65%</td>
</tr>
<tr>
<td>10/1973-5/1975</td>
<td>-3.26%</td>
<td>+2.16%</td>
<td>-0.31%</td>
</tr>
<tr>
<td>5/1979-7/1980</td>
<td>-2.04%</td>
<td>+3.11%</td>
<td>-1.86%</td>
</tr>
<tr>
<td>7/1981-11/1982</td>
<td>-4.97%</td>
<td>-0.52%</td>
<td>-2.28%</td>
</tr>
<tr>
<td>7/1990-6/1992</td>
<td>-2.74%</td>
<td>0.81%</td>
<td>-1.70%</td>
</tr>
<tr>
<td>12/2000-6/2003</td>
<td>-3.16%</td>
<td>-0.72%</td>
<td>-4.72%</td>
</tr>
<tr>
<td>8/2007-10/2009</td>
<td>-8.34%</td>
<td>-3.28%</td>
<td>-7.47%</td>
</tr>
</tbody>
</table>
Cyclical Properties
Industry Composition: Payroll Data

Actual and counterfactual employment changes during recoveries:

<table>
<thead>
<tr>
<th>Recoveries</th>
<th>Men</th>
<th>Women Actual</th>
<th>Women Counterfactual</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1970-12/1973</td>
<td>+8.06%</td>
<td>+14.12%</td>
<td>+16.22%</td>
</tr>
<tr>
<td>7/1980-7/1983</td>
<td>-2.84%</td>
<td>+5.52%</td>
<td>+4.11%</td>
</tr>
<tr>
<td>6/1992-6/1995</td>
<td>+7.92%</td>
<td>+7.81%</td>
<td>+7.04%</td>
</tr>
<tr>
<td>6/2003-6/2006</td>
<td>+5.98%</td>
<td>+3.38%</td>
<td>+3.24%</td>
</tr>
<tr>
<td>10/2009-4/2012</td>
<td>+5.17%</td>
<td>+2.25%</td>
<td>+0.77%</td>
</tr>
</tbody>
</table>

- Industry composition does not explain the gender difference in employment change in recoveries.
Gender differences in employment growth during recessions and recoveries are associated with changes over time in trends in participation by gender.

In early cycles, female employment was strongly rising in recessions and recoveries, following the trend in participation.

In later cycles, female participation stopped rising, and affecting the cyclical behavior of female employment.

Male participation and employment behavior is similar in early and recent cycles.
Cyclical Properties
Participation, Employment and Unemployment: Early Cycles

Figure 18: Decomposition of unemployment rate changes into changes in the labor force participation rate and the employment-to-population ratio for women (left panel) and men (right panel), 1981-82 cycle. Source: Bureau of Labor Statistics.

Figure 19: Decomposition of unemployment rate changes into changes in the labor force participation rate and the employment-to-population ratio for women (left panel) and men (right panel), 1990-91 cycle. Source: Bureau of Labor Statistics.

accounts for almost all of the convergence in the unemployment rates by gender in the data. The rise in female labor force attachment and the variation in the job-loss rate account for almost all of this convergence. Other exogenous factors have only a minor effect on the closing of the gender unemployment gap. We also examine the determinants of the cyclical behavior of unemployment by gender empirically, and find that industry composition plays an important role in recent recessions. The main purpose of our analysis is to provide a framework to understand the determinants of these changes.
Cyclical Properties
Participation, Employment and Unemployment: Recent Cycles

1991–92 Cycle

2001 Cycle

2007–09 Cycle
Cyclical Properties
Aggregate Employment: Jobless Recoveries

- The flattening of female labor force participation since the early 1990s can account for the recent jobless recoveries.

E/P counterfactual: Female E/P replaced with average for early recessions.
Conclusions

- Our 3-state model captures the joint evolution of gender participation and unemployment gaps in the US quite well.
- The convergence in labor force attachment by gender seems to be the main factor explaining the decline in the gender unemployment gap.
- The link between convergence in attachment and decline in the gender unemployment gap is supported by evidence from OECD countries.
- At the cyclical frequency, gender differences in industry distribution account for a large fraction of the gender unemployment gap in recent recessions for the US.
- The flattening of female participation since the early 1990s can account for the joblessness of recoveries in recent cycles.
The 2007-2009 Cycle

- The male-female difference in unemployment rates reached 2.7 ppts in the 2007-2009 recession.
- Men experienced larger job losses during the recession, while women experience smaller job creation during the recovery.
- Sectoral composition accounts for majority of gender difference in job losses during the recession, but it cannot explain the gender differences in job creation during the recovery.
The 2007-2009 Cycle
The Link Between Participation and Unemployment

- The 2007-2009 cycle is characterized by a particularly slow recovery of the unemployment rate, and at the same time a sizable decline in participation, for both men and women.
Our model suggests that the decline in participation may be in part responsible for the slow recovery of unemployment, as the decline in attachment puts upward pressure on the unemployment rate.

To assess the strength of this mechanism, we run the following experiment:

- We change parameters to match the skill composition, the skill premium, UE and EU flows to 2011 data.
- We then reduce attachment by adjusting the distribution of x to match the labor force participation rate by gender in 2011.
The 2007-2009 Cycle
The Link Between Participation and Unemployment

- The model predicts that the decline in attachment causes a rise in unemployment.
- Changes in labor market conditions alone do not give rise to a decline in participation in the model.

<table>
<thead>
<tr>
<th></th>
<th>LFPR</th>
<th>Unemployment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>2001 Data</td>
<td>0.73</td>
<td>0.59</td>
</tr>
<tr>
<td>Benchmark</td>
<td>0.73</td>
<td>0.59</td>
</tr>
<tr>
<td>EU</td>
<td>0.78</td>
<td>0.65</td>
</tr>
<tr>
<td>EU and UE</td>
<td>0.79</td>
<td>0.64</td>
</tr>
</tbody>
</table>
The 2007-2009 Cycle
The Link Between Participation and Unemployment

- The model also matches the empirical rise in the NU rate.

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Unemployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>0.073</td>
<td>0.100</td>
</tr>
<tr>
<td>Men</td>
<td>0.079</td>
<td>0.109</td>
</tr>
<tr>
<td>LFPR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>Men</td>
<td>0.73</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Distribution of x by gender
Women’s Non-Participation Spells

Figure 4.
Percent of Women Working During Pregnancy and Percent Working After Their First Birth by Month Before or After Birth: Selected Years, 1961–1965 to 2000–2002

Ratio of men’s wages to women’s wage:

<table>
<thead>
<tr>
<th></th>
<th>1978</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>Unskilled</td>
<td>1.65</td>
<td>1.10</td>
</tr>
<tr>
<td>Skilled</td>
<td>1.72</td>
<td>1.12</td>
</tr>
</tbody>
</table>