### The Macroeconomics of Microfinance

Francisco Buera<sup>1</sup> Joseph Kaboski<sup>2</sup> Yongseok Shin<sup>3</sup>

<sup>1</sup>Federal Reserve Bank of Minneapolis, UCLA & NBER

<sup>2</sup>University of Notre Dame & NBER

<sup>3</sup>Wash U St. Louis & St. Louis Fed

January, 2012



• Small loans, targeted to the poor I data

- Small loans, targeted to the poor Data
  - business loans

- Small loans, targeted to the poor late
  - business loans
  - · consumption smoothing

- Small loans, targeted to the poor late
  - business loans
  - · consumption smoothing
  - human capital investment

- - business loans
  - consumption smoothing
  - human capital investment
- Low default rates: 2.06 3.54% (median)

- Small loans, targeted to the poor late
  - business loans
  - consumption smoothing
  - human capital investment
- Low default rates: 2.06 3.54% (median)
- High growth rates, desire to scale up even more...



- Small loans, targeted to the poor Description
  - business loans
  - consumption smoothing
  - human capital investment
- Low default rates: 2.06 3.54% (median)
- High growth rates, desire to scale up even more... Late
- ... but no evaluation of general equilibrium effects

• Models the microfinance revolution as an innovation that:

- Models the microfinance revolution as an innovation that:
  - guarantees a minimum (uncollateralized) loan for production

- Models the microfinance revolution as an innovation that:
  - guarantees a minimum (uncollateralized) loan for production
  - 2. has no risk of default

- Models the microfinance revolution as an innovation that:
  - guarantees a minimum (uncollateralized) loan for production
  - 2. has no risk of default
  - 3. and no intermediation costs

 Question: What are the general equilibrium (GE) effects of microfinance on development?

 Question: What are the general equilibrium (GE) effects of microfinance on development?

Answer: Microfinance

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - 2. depresses capital accumulation

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - 2. depresses capital accumulation
    - little net effect on per-capita income

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - depresses capital accumulation
    - little net effect on per-capita income
  - increases wages, redistributing from "rich" to "poor"

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - depresses capital accumulation
    - little net effect on per-capita income
  - increases wages, redistributing from "rich" to "poor"
    - increases welfare/consumption of workers/marginal entrepreneurs

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - depresses capital accumulation
    - little net effect on per-capita income
  - increases wages, redistributing from "rich" to "poor"
    - increases welfare/consumption of workers/marginal entrepreneurs
- Important GE effects

- Question: What are the general equilibrium (GE) effects of microfinance on development?
- Answer: Microfinance
  - increases TFP
  - depresses capital accumulation
    - little net effect on per-capita income
  - 3. increases wages, redistributing from "rich" to "poor"
    - increases welfare/consumption of workers/marginal entrepreneurs
- Important GE effects: more redistribution and welfare gains...but smaller impact on aggregate output and consumption... opposite impact on TFP and capital

### Road Map

- Benchmark calibrated model
  - Compare with microevaluations
  - Present GE aggregate impacts
  - Present GE distributional impacts
  - Compare GE with PE effects
- Extensions:
  - Small open economy
  - Model w/ market labor shock
  - Add large-scale sector with fixed cost

#### Benchmark Model

• Heterogeneous agents: entrepreneurial ability and wealth.

#### **Benchmark Model**

- Heterogeneous agents: entrepreneurial ability and wealth.
- Occupational choice: Work for wage or operate their own technology.

#### **Benchmark Model**

- Heterogeneous agents: entrepreneurial ability and wealth.
- Occupational choice: Work for wage or operate their own technology.
- Financial friction: limited enforcement.

# Model: Plant Technology

$$f(z,k,l) = zk^{\alpha}l^{\theta}$$

# Model: Plant Technology

$$f(z,k,l) = zk^{\alpha}l^{\theta}$$

- z: entrepreneurial productivity
- 1 unit of entrepreneur's time
- k: capital input
- l: labor input (workers)
- $\alpha + \theta < 1$

# Model: Process of Entrepreneurial Talent

$$z_s = \left\{ \begin{array}{l} z_{s-1} \quad \text{w/ prob. } \gamma \\ \zeta_s \quad \text{w/ prob. } 1-\gamma \end{array} \right.$$
 
$$\zeta_s \stackrel{iid}{\sim} \eta \zeta^{-\eta-1}, \; \zeta \geq 1$$

•  $\gamma$  measures persistence

## Model: Process of Entrepreneurial Talent

$$z_s = \left\{ \begin{array}{ll} z_{s-1} & \text{w/ prob. } \gamma \\ \zeta_s & \text{w/ prob. } 1-\gamma \end{array} \right.$$

$$\zeta_s \stackrel{iid}{\sim} \eta \zeta^{-\eta - 1}, \ \zeta \ge 1$$

- $\gamma$  measures persistence
- $-\eta$  measures the thickness of the right tail

### Model: Timing



### Model: Timing



Workers' Bellman Equation

Workers supply 1 unit of labor at  $\boldsymbol{w}$ 

Workers' Bellman Equation

#### Workers supply 1 unit of labor at $\boldsymbol{w}$

$$v^{w}(a, z) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E}_{z} \max \left\{ v^{w}(a', z'), v^{e}(a', z') \right\}$$
$$c + a' \le w + (1 + r) a$$

Workers' Bellman Equation

Workers supply 1 unit of labor at w

$$v^{w}(a, z) = \max_{c, a' \ge 0} u(c) + \beta \mathbb{E}_{z} \max \left\{ v^{w}(a', z'), v^{e}(a', z') \right\}$$
$$c + a' \le w + (1 + r) a$$

where entrepreneur's value  $v^e\left(a',z'\right)$  is given next

#### Entrepreneurs' Bellman Equation

$$\begin{split} v^e\left(a,z\right) &= \max_{c,a',k,l} u\left(c\right) + \beta \mathbb{E}_z \max\left\{v^w\left(a',z'\right), v^e\left(a',z'\right)\right\} \\ &c + a' \leq zk^\alpha l^\theta - (r+\delta)\,k - wl + (1+r)\,a \\ &\qquad \qquad zk^\alpha l^\theta - (r+\delta)k - wl + (1+r)a \\ &\geq (1-\phi)\left[zk^\alpha l^\theta - wl + (1-\delta)k\right] \\ &\qquad \qquad \text{(enforcement constraint, EC)} \end{split}$$

#### Entrepreneurs' Bellman Equation

$$\begin{split} v^e\left(a,z\right) &= \max_{c,a',k,l} u\left(c\right) + \beta \mathbb{E}_z \max\left\{v^w\left(a',z'\right), v^e\left(a',z'\right)\right\} \\ &c + a' \leq z k^\alpha l^\theta - (r+\delta) \, k - w l + (1+r) \, a \\ &k \leq \bar{k}(a,z;\phi) \\ \text{(rental limit)} \end{split}$$



#### **Rental Limit**



### **Occupational Choice**



# Occupational Choice (cont'd)



## Occupational Choice (cont'd)



### **Dynamic of Capital Input**



#### Introduce new technology that:

- guarantees a minimum (uncollateralized) loan for production
- 2. has no risk of default
- 3. and no intermediation costs

New technology that changes rental limit from:

New technology that changes rental limit from:

$$k \leq \bar{k}(a,z;\phi)$$

New technology that changes rental limit from:

$$k \le \bar{k}(a, z; \phi)$$

to

$$k \le \max\{\bar{k}(a, z; \phi), a + b^{MF}\}\$$

#### **Rental Limit**



# Rental Limit w/ Microfinance, $b^{MF} = \frac{1}{2}w$



# (Partial Equilibrium) Impact on Occupational Choice



# (Partial Equilibrium) Impact on Occupational Choice



# Rental Limit w/ Microfinance, $b^{MF}=w$



# (Partial Equilibrium) Impact on Occupational Choice



# (Partial Equilibrium) Impact on Occupational Choice



# Objects for Stationary Competitive Equilibria

- o(a, z): occupational choice
- G(a, z): joint distribution of a, z
- $\mu(z) = 1 z^{-\eta}$ : stationary distribution of z

# Definition: Stationary Competitive Equilibria

 $G\left(a,z\right)$ , policies  $o\left(a,z\right)$ ,  $c\left(a,z\right)$ ,  $a'\left(a,z\right)$ ,  $k\left(a,z\right)$ ,  $l\left(a,z\right)$ , rental limit  $\bar{k}(a,z;\phi)$ , and prices w and r such that:

- Allocations solve individuals' problems given prices and rental limit;
- $\bar{k}(a,z;\phi)$  satisfies EC;
- Labor and credit markets clear;
- G(a,z) satisfies

$$\begin{split} G\left(a,z\right) &= \gamma \int_{\tilde{z} < z, a'(\tilde{a}, \tilde{z}) \le a} G(d\tilde{a}, d\tilde{z}) \\ &+ (1 - \gamma) \mu(z) \int_{a'(\tilde{a}, \tilde{z}) \le a} G(d\tilde{a}, d\tilde{z}). \end{split}$$

• Choose technology  $(\alpha,\theta)$  and productivity process  $(\eta^{US},\gamma)$  to match US data on size distribution and dynamics of establishments and income concentration, given  $\phi^{US}=1$ 

- Choose technology  $(\alpha,\theta)$  and productivity process  $(\eta^{US},\gamma)$  to match US data on size distribution and dynamics of establishments and income concentration, given  $\phi^{US}=1$
- Choose contract enforcement and distribution of productivity  $(\eta^{IND},\phi^{IND})$  to match Indian data on the size distribution and external finance to GDP

- Choose technology  $(\alpha,\theta)$  and productivity process  $(\eta^{US},\gamma)$  to match US data on size distribution and dynamics of establishments and income concentration, given  $\phi^{US}=1$
- Choose contract enforcement and distribution of productivity  $(\eta^{IND},\phi^{IND})$  to match Indian data on the size distribution and external finance to GDP
- Evaluate impact of  $b^{MF}$

| Target                   | US Data     | Model | Parameter                |
|--------------------------|-------------|-------|--------------------------|
| top 10% employment share | 0.69        | 0.69  | $\eta^{US} = 4.84$       |
| top 5% income share      | 0.30        | 0.30  | $\alpha + \theta = 0.79$ |
| Exit rate                | 0.10        | 0.10  | $\gamma = 0.89$          |
| Interest rate            | 0.04        | 0.04  | $\beta = 0.92$           |
| Target                   | Indian Data | Model | Parameter                |
| top 10% employment share | 0.58        | 0.58  | $\eta^{IND} = 5.56$      |
| Ext. fin./GDP            | 0.34        | 0.34  | $\phi^{IND} = 0.08$      |

 Two recent studies evaluate interventions impact on entrepreneurial households

- Two recent studies evaluate interventions impact on entrepreneurial households
  - Urban: India Hyderabad study (Banerjee et al, 2010)

- Two recent studies evaluate interventions impact on entrepreneurial households
  - Urban: India Hyderabad study (Banerjee et al, 2010)
  - Rural: Thai village funds study (Kaboski and Townsend, forthcoming, 2010)

- Two recent studies evaluate interventions impact on entrepreneurial households
  - 1. Urban: India Hyderabad study (Banerjee et al, 2010)
  - Rural: Thai village funds study (Kaboski and Townsend, forthcoming, 2010)
- We simulate similar sized intervention and compare short-run, partial equilibrium impacts

- Two recent studies evaluate interventions impact on entrepreneurial households
  - Urban: India Hyderabad study (Banerjee et al, 2010)
  - Rural: Thai village funds study (Kaboski and Townsend, forthcoming, 2010)
- We simulate similar sized intervention and compare short-run, partial equilibrium impacts
- Model capture key features (heterogeneity, orders of magnitude) reasonably well

### Impacts on Marginal Ability Entrepreneurs



#### Table: Comparison Summary

|                           | Model | India    | Thailand     |
|---------------------------|-------|----------|--------------|
| Max Loan/Exp per Cap      | 1     | 1-2      | 1            |
| Credit/Exp per Cap        | 0.1   | 0.1      | 0.1          |
| Microfinance/Total Credit | 29%   | 44%      | 33%          |
| Entrepreneurship          | +4 pp | +2 pp    | +1 pp        |
| Investment                | +46%  | +16/128% | +30% (prob). |
| Consumption               | +1%   | +16/0%   | +15%         |

Rural Thailand vs. Urban India and Model

- Rural Thailand vs. Urban India and Model
  - Stronger evidence for consumption increase

- Rural Thailand vs. Urban India and Model
  - Stronger evidence for consumption increase
  - Weaker evidence for entrepreneurship, investment increase

- Rural Thailand vs. Urban India and Model
  - Stronger evidence for consumption increase
  - · Weaker evidence for entrepreneurship, investment increase
    - only seen in larger samples

- Rural Thailand vs. Urban India and Model
  - Stronger evidence for consumption increase
  - Weaker evidence for entrepreneurship, investment increase
    - only seen in larger samples
  - Rural villages likely to have segmented markets, 7 percent overall wage increase

- Rural Thailand vs. Urban India and Model
  - Stronger evidence for consumption increase
  - Weaker evidence for entrepreneurship, investment increase
    - only seen in larger samples
  - Rural villages likely to have segmented markets, 7 percent overall wage increase
    - concentrated in low-skilled labor in the village

### **Aggregate Implications**





# Aggregate Implications: Short-Run vs. Long-Run





# Aggregate Implications: Role of Occupational Choice





Why does TFP increase?

- Why does TFP increase?
  - Microfinance allows entrepreneurs with high marginal product of capital to invest more

- Why does TFP increase?
  - Microfinance allows entrepreneurs with high marginal product of capital to invest more
- · Why does capital fall?

- Why does TFP increase?
  - Microfinance allows entrepreneurs with high marginal product of capital to invest more
- Why does capital fall?
  - Microfinance redistributes income from talented (high saving) to untalented (low saving) individuals

### **Understanding TFP**



# **Understanding Capital Accumulation**

Aggregate savings rate, S/Y, is an (income) weighted average of individual savings:

# **Understanding Capital Accumulation**

Aggregate savings rate, S/Y, is an (income) weighted average of individual savings:

$$\frac{S}{Y} = \frac{Y(z_{low})}{Y} \frac{S(z_{low})}{Y(z_{low})} + \frac{Y(z_{high})}{Y} \frac{S(z_{high})}{Y(z_{high})}$$

# **Understanding Capital Accumulation**



### Distribution of Welfare Gains

#### Distribution of Welfare Gains

fraction of permanent consumption



1. More redistribution

- 1. More redistribution
  - · bigger welfare gains for low ability, low wealth

- More redistribution
  - · bigger welfare gains for low ability, low wealth
- 2. Smaller positive aggregate impacts

- More redistribution
  - · bigger welfare gains for low ability, low wealth
- 2. Smaller positive aggregate impacts
  - lower TFP (less entry, talented guys get less resources)

- 1. More redistribution
  - · bigger welfare gains for low ability, low wealth
- 2. Smaller positive aggregate impacts
  - lower TFP (less entry, talented guys get less resources)
  - less capital (wages redistribute to low savers)

### More Redistribution in GE



# Smaller Aggregate Impacts in GE





# Smaller Aggregate Impacts in GE vs PE short-run





# Smaller Aggregate Impacts in GE vs PE short-run TFP Decomposition





Small open economy (capturing capital supplied by foreign donors)

- - Capital demand still falls: lower wealth accumulation

- - Capital demand still falls: lower wealth accumulation
  - Smaller TFP gains with r constant

- - · Capital demand still falls: lower wealth accumulation
  - Smaller TFP gains with r constant

- - Capital demand still falls: lower wealth accumulation
  - Smaller TFP gains with r constant
- - Lower TFP, capital accumulation -> wages fall

- - Capital demand still falls: lower wealth accumulation
  - Smaller TFP gains with r constant
- - Lower TFP, capital accumulation -> wages fall
  - Self-employed benefit relative to workers

- - Capital demand still falls: lower wealth accumulation
  - Smaller TFP gains with r constant
- Zero labor shock Ext2
   (capturing poor, low ability entrepreneurs)
  - Lower TFP, capital accumulation -> wages fall
  - Self-employed benefit relative to workers
- Two-sector model with fixed costs (capturing additional GE effect on relative price)

- - Capital demand still falls: lower wealth accumulation
  - · Smaller TFP gains with r constant
- Zero labor shock Ext2
   (capturing poor, low ability entrepreneurs)
  - Lower TFP, capital accumulation -> wages fall
  - Self-employed benefit relative to workers
- Two-sector model with fixed costs (capturing additional GE effect on relative price)
  - Large impact of large loans

#### Conclusion

- In GE microfinance is primarily a redistributive policy
- Potential impact on consumption & productivity, but not aggregate output as it discourages capital accumulation.
- GE effects differ from PE
  - · smaller effects on output and consumption
  - more redistribution in GE
  - opposite effects on TFP and capital accumulation

## Small Open Economy Model

- Fixed interest rate, wage rate still adjusts
- Captures idea that microfinance capital may come from abroad
- Capital still linked to savings decisions through collateral constraints

### Closed vs. Small Open Economy





#### **Labor Shock Model**

- When idea dies, draw zero labor endowment with probability  $\boldsymbol{\pi}$
- Captures idea of poor, potentially undercapitalized, low ability entrepreneur
- Calibrate  $\pi$  to match 35 percent self-employed (India)

## Aggregate Impacts: Labor Shock





### Poorest, i.e., self-employed, benefit most

▶ back



#### Two-Sector Model

- Two sectors:  $p=(p_S,p_M)$ , with different fixed costs,  $\kappa_S<\kappa_M$ , S: Services M: manuf./investment
- Heterogeneous individuals: entrepreneurial ability,  $z_S$  and  $z_M$ , and wealth,
- Choice of occupation and sector: Work for wage or operate their own technology in either sector,
- Financial friction: collateral constraint, limited enforcement.



## Aggregate Implications: Two-Sector



# Aggregate Implications: Two-Sector (Cont'd)





### **Understanding TFP: Two-Sector**





# **Understanding Capital Accumulation: Two-Sector**





$$\max_{c,a',l} u(c) + \beta \mathbb{E}_{z} v(a', z') \ge v^{def}$$

$$\max_{c,a',l} u(c) + \beta \mathbb{E}_{z} v(a',z') \ge v^{def}$$

where

$$v^{def} = \max_{c,a',l} u(c) + \beta \mathbb{E}_z v(a', z')$$
$$c + a' \le (1 - \phi) \left[ zk^{\alpha}l^{\theta} - wl + (1 - \delta)k \right]$$

$$\max u(c) + \beta \mathbb{E}_z v(a', z') \ge v^{def}$$



$$\max u(c) + \beta \mathbb{E}_z v(a', z') \ge v^{def}$$

$$\updownarrow$$

$$zk^{\alpha}l^{\theta} - (r+\delta)k - wl + (1+r)a$$

$$\ge (1-\phi) \left[ zk^{\alpha}l^{\theta} - wl + (1-\delta)k \right]$$

$$\max u(c) + \beta \mathbb{E}_z v(a', z') \ge v^{def}$$

$$\updownarrow$$

$$zk^{\alpha}l^{\theta} - (r+\delta)k - wl + (1+r)a$$

$$\ge (1-\phi) \left[ zk^{\alpha}l^{\theta} - wl + (1-\delta)k \right]$$

$$\updownarrow$$

$$k \le \overline{k}(a, z; \phi)$$

▶ hack

Table: Summary of Public Small Business Credit Programs

|                        | India    | Indonesia     | Philippines   | Thailand |
|------------------------|----------|---------------|---------------|----------|
| Program                | NABARD   | BRI-KUPEDES   | PCFC          | MBVF     |
| Program Size           | \$2.7 Bn | \$21 Bn       | \$150 M       | \$1.5 Bn |
| Typical/Avg. Loan      | \$1,200  | up to \$2,800 | up to \$3,500 | \$500    |
| Loan/Income per-Capita | 1.4      | up to 1.3     | up to 2       | 0.4      |

| Country    | Borrowers  | MF Loans | Average      | Per-capita | Total Credit |
|------------|------------|----------|--------------|------------|--------------|
|            | per-capita | /GDP     | Loan Balance | Income     | / GDP        |
| Bangladesh | 0.13       | 0.028    | 112          | 547        | 0.37         |
| Mongolia   | 0.13       | 0.129    | 1393         | 1410       | 0.62         |
| Peru       | 0.11       | 0.041    | 1590         | 4658       | 0.21         |
| Bolivia    | 0.09       | 0.107    | 1926         | 1776       | 0.31         |
| Vietnam    | 0.09       | 0.044    | 510          | 1024       | 1.06         |
| Kenya      | 0.04       | 0.036    | 744          | 803        | 0.20         |
| India      | 0.02       | 0.003    | 146          | 1154       | 0.53         |
| Mean       | 0.02       | 0.004    | 655          | 3192       | 0.50         |
| Std. Dev.  | 0.03       | 0.020    | 3192         | 3071       | 0.30         |





## Two-Sector Model: Plant Technology

Fixed cost  $\kappa_S < \kappa_M$  (units of sector output)

→ back

# Two-Sector Model: Plant Technology

Fixed cost  $\kappa_S < \kappa_M$  (units of sector output)

Gross output:  $f^{i}(z_{i}, k, l) = z_{i}k^{\alpha}l^{\theta}$ 



### Two-Sector Model: Preferences

#### Households maximize

$$U\left(c\right) = E_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t\right)$$

$$u\left(c_{t}\right) = \frac{1}{1-\sigma} \left(c_{S,t}^{1-\varepsilon} + c_{M,t}^{1-\varepsilon}\right)^{\frac{1-\sigma}{1-\varepsilon}}$$

### Two-Sector Model: Individual Problem

Entrepreneurs' Bellman Equation, Sector i

$$v^{i}(a, z) = \max_{c, a', k, l} u(c) + \beta \mathbb{E}_{z} v(a', z')$$
$$pc + a' \leq p_{i} f(z_{s}, k, l) - Rk - wl - (1 + r) p_{i} \kappa_{i} + (1 + r) a$$
$$k \leq \overline{k}^{i}(a, z; \phi)$$

▶ hack

# **Modeling Microfinance**

$$k \le \max\{\bar{k}(a, z; \phi), \underline{k}^{MF} - p_i \kappa_i\}$$

# Pareto Distribution of Productivity

$$z_i \sim \eta z_i^{-(\eta+1)}, \ z_S \perp z_M$$

- Thick right tail within each sector.
- Exact Cobb-Douglas benchmark.

→ back

### Perfect Credit Benchmark

Size Distribution of Establishments

Sector i:

$$\Pr\left[\tilde{l}_i > l\right] = \left(\frac{l\left(\hat{z}_i\right)}{l}\right)^{\eta(1-\alpha-\theta)}$$

### Perfect Credit Benchmark

Size Distribution of Establishments

Sector i:

$$\Pr\left[\tilde{l}_i > l\right] = \left(\frac{l\left(\hat{z}_i\right)}{l}\right)^{\eta(1-\alpha-\theta)}$$

• Average employment per establishment  $\bar{l}_i$ :

$$\frac{\bar{l}_i}{\bar{l}_{i'}} = \frac{p_i \kappa_i + w}{p_{i'} \kappa_{i'} + w}$$

# **Empirical Strategy**

| Target                 | Data | Model | Parameter         |
|------------------------|------|-------|-------------------|
| US                     |      |       |                   |
| Avg. scale in services | 14   | 14    | $\kappa_S = 0.00$ |
| Avg. scale in manuf.   | 47   | 47    | $\kappa_S = 1.00$ |
| Manuf. share of GDP    | 0.25 | 0.25  | $\psi = 0.91$     |

"It is worth noting that a fairly low take-up (16% after two years), similar to what was found in other studies, suggest that the effect of the program on poverty reduction and welfare is necessarily going to be relatively limited, even in the longer run. This is not necessarily a failure of this program in particular, or micro-credit in general. It may well be a very effective tool precisely for the minority of households who wants to expand their activity."

Crepon, Devoto, Duflo and Pariente (2011) Deck

### **Understanding TFP**

$$Y = \underbrace{\frac{\left[\int_{i:o_i=e} z_i^{\frac{1}{1-\theta}} \left(\frac{k_i}{K}\right)^{\frac{\alpha}{1-\theta}} di\right]^{1-\theta}}{N^{1-\alpha-\theta}} \left(\frac{L}{N}\right)^{\theta}}_{TFP} K^{\alpha} N^{1-\alpha}$$

where 
$$N=L+E$$
,  $L=\int_{i:o_i=w}di$  and  $E=\int_{i:o_i=e}di$ 

# Understanding TFP (cont'd)

$$TFP^{k-eff} = \left[ \frac{\int_{i:o_i = e} z_i^{\frac{1}{1 - \alpha - \theta}} di}{E} \right]^{1 - \alpha - \theta} \left( \frac{E}{N} \right)^{1 - \alpha - \theta} \left( \frac{L}{N} \right)^{\theta}$$

### Understanding TFP (cont'd)

$$\frac{TFP(b^{MF})}{TFP(0)} = \underbrace{\frac{TFP(b^{MF})}{TFP^{k-eff}(b^{MF})}}_{k-efficiency} \underbrace{\frac{TFP^{k-eff}(b^{MF})}{TFP^{k-eff}(0)}}_{z-efficiency}$$

▶ hack