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Complementaries 
 
Behind social interactions models is the assumption that complementarities exist 

between the behavior of individuals.  This idea has been very extensively 

explored in the economic literature, perhaps most deeply in the work on Paul 

Milgrom and John Roberts. 

 

Social interactions models are typically much less sophisticated than those 

studied in the game theory literature (although there are exceptions!!) 
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Example: Cooper and John 
 
Cooper and John’s (1988) paper illustrates the main ideas in modeling 

complementarities among economic agents.   

 

In their model, they consider I agents, each of whom makes an effort choice 

[ ]0,1ie ∈ . 
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Each agent has a payoff function 

 

( ),i iV e e−  
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The payoff function is assumed twice differentiable.  Comment: I will not worry 

about corner solutions in the discussion. 
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The key to the Cooper and John analysis is the assumption that the payoff 

function exhibits complementarities. 
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Note this assumption means that for effort levels a b>  and c d> ,  
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which can be rewritten 

( ) ( ) ( ) ( ), , , ,i i i iV a e V b e V a e V b e− − − −− > −  

 
Critical Idea 

 

Complementarities induce a tendency towards similar behavior.  
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Equilibria 
 

A symmetric Nash equilibrium is an effort level NCe  such that 
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In contrast, a cooperative equilibrium is an effort level Ce such that 
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So the cooperative and noncooperative equilibria will not coincide unless  
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If  

( ),
0
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i
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∂
>
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then the noncooperative equilibrium implies socially inefficient effort. 

 

Comment: Milgrom and Robert extend to vector choices, payoffs with 

discontinuities,  noncontinuous choice spaces. 

 

 

 

 

Assortative Matching 
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There is a classic result due to Becker (1973) that relates the efficiency of 

assortative matching to complementarity. I describe the model as it illustrates a 

deep relationship between complementarity and the nature of optimal matching 

of individuals across groups.  

 

Consider a population of N  men and N  women.  Suppose that the product of a 

marriage between man u  and woman v  depends on scalar characteristics um  

and vw  of the man and woman respectively. Suppose that the product of a given 

match is ( ),m wΦ  and that this function is increasing in both arguments.  Becker 

(1973) established the following. 

 

Proposition. Optimality of assortative matching in the Becker marriage 
model 
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If ( )2 ,
0

m w
m w

∂ Φ
≥

∂ ∂
 then assortative matching maximizes the sum of products 

across marriages. 

 



  12 

Pf. Suppose there are two men with attributes a  and b  and two women with 

attributes c  and d . Assortative matching means the marriages are { },a c  and 

{ },b d . The sum of their product, in comparison to the non-assortatively match 

marriages  { },a d  and { },b c  

 

( )
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 where the inequality is immediate since integral is over a positive function. 
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Notice that the Becker result takes the location of agent characteristics in the 

payoff function seriously; in other words the first argument of the function refers 

to the characteristics of the man and the second argument refers to the 

characteristics of the woman.   

 

Another way to think about the optimal matching problems is to simply say that 

one has NK  agents with scalar characteristics ia  who must be organized into K -

tuples, each of which produces some payoff. In this case, one cannot 

immediately equate complementarity with the efficiency of assortative matching.  
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In order to preserve the equivalence, it is necessary to add an assumption that 

Durlauf and Seshadri (2003) call permutation invariance. Permutation invariance 

means that if a  is a K -tuple of characteristics and a′ is a permutation of a , then  

 

( ) ( )a a′Φ = Φ  

 

In this case, one can show that assortative matching is also efficient.  
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To see why, consider any given initial configuration of agents into groups and 

take a pair of such groups.   

 

Reorder the vectors of characteristics for each group so that the elements in 

each run from largest to smallest. If the vectors do not exhibit assortative 

matching, replace them with their join and meet. This new configuration must 

produce at least as much as the original configuration.  Repeat this procedure for 

the two new vectors of characteristics.   

 

Eventually, you will produce assortatively matched vectors for the pair of vectors 

as an efficient allocation. If one then applies this to all pairs in the allocation, 

assortative matching will emerge as an output maximizing configuration.  See 

Durlauf and Seshadri (2003) for the formal argument.  
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Permutation invariance makes sense in some contexts. If a firm is assigned K  

workers, the firm’s manager will assign the workers to tasks in order to maximize 

total output.  The order in which the workers’ characteristics are reported does 

not matter to the manager.  When one considers contexts with permutation 

invariance, assortative matching is equivalent to stratification of agents across 

groups with respect to the characteristic a .  By stratification, I mean that the 

supports of the characteristics can be completely ordered using weak 

inequalities. 
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Robustness of Complementarity Assortative Matching Link 
 

Which assumptions are critical in linking the efficiency of assortative matching 

with complementarity?   

 

A first important assumption is that all groups are of equal size. In other words, 

the comparisons of the configurations of alternative group compositions in which 

supermodularity implies the efficiency of assortative matching presupposes that 

the arguments of the payoff functions have the same dimension.   

 

Durlauf and Seshadri (2003) gives an example in which assortative matching, 

breaks down when group sizes can differ.   
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The idea of their analysis is that firms (for example) have distinct production 

technologies according to the number of workers employed. Each of these 

functions may be supermodular. However, unless one places additional 

restrictions across these functions, there is no guarantee that assortative 

matching is efficient. To see this, suppose that there are three workers with 

characteristics 1 1a = , 2 1.5a =  and 3 2a =  respectively.  Suppose that the size-

specific payoff functions are 

 

( ) ( )( )1/32
1 .0001 max 1,0u u ua a aΦ = + −  

( ) ( )2 , .5u v u va a a aΦ = ⋅  

( )3 , , .0001u v w u v wa a a a a aΦ =  
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This example raises an additional question: under what conditions is it efficient to 

have multiple groups?  This type of question has been studied in many 

substantive contexts (e.g. the literature on span of control; a classic example is 

Williamson (1967)).  To think about multiple groups of different sizes, it is 

necessary to consider a set of size-specific payoff functions ( )IΦ ⋅ ; the subscript 

denotes the number of agents that are members of the group.  From the vantage 

point of the abstract payoff functions I have described, a necessary condition for 

the existence of multiple groups, assuming that ( )0 0IΦ = I∀   is that for at least 

one group of size I  and some one 0J >  

 

 ( ) ( ),0  if 0 0I J J Ia a a J+Φ < Φ > >  
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If multiple group sizes are efficient, the relationship between efficient segregation 

and the empirical density of the ua ’s will be complicated. In particular, there does 

not exist a monotonic relationship between the degree of inequality in the cross-

section distribution of ia  and the efficiency of integration of different types into 

one group.  

 

To see this, suppose that stratification is initially efficient for groups with 

characteristics b  and c , i.e. 

 

( ) ( ) ( ),I J I Jb c b c+Φ < Φ +Φ  

   

Suppose that c  declines to c′ . The payoff from integrating all agents changes by 

 

( ) ( ), ,I J I Jb c b c+ +′Φ −Φ  
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The payoff from continued stratification changes by  

 

( ) ( )J Jc c′Φ −Φ  

 

which means that increasing inequality can increase the relative attractiveness of 

integration of different ability types, if the allocation is efficient. 
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A second important assumption is that the environment is static. Assortative 

matching can be dynamically inefficient even if every static function of interest 

exhibits complementarities.   

 

This following numerical example, Blume, Durlauf, and Jarayaram  (in progress) 

illustrates general ideas.  
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Consider 4 agents who are tracked over 3 periods. Each agent is associated with 

a period-specific characteristic itω ; for concreteness assume that it is educational 

attainment.  The distribution of period 0 values is 10, 10, 20, 20.   

 

Agents are placed in two person groups, Think of these as classrooms. Agents 

are placed in pairs { },i i ′ . Pairings can differ between periods 0 and 1. The value 

of  1itω +  is determined by itω  and i tω ′ , the value for the agent with whom he is 

paired. The policymaker chooses the pairings.   

 

The objective of the policymaker is to maximize 2ω , i.e. the average 

characteristic in period 2.   
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Suppose that one step ahead transformation function for agent characteristics is  

 

( ) ( ) ( )1 1 2, ,it it i t it it i tf fφ ω ω ω ω ω ω′ ′+ = +  

 

( )1

0 if 9
.9  if 9 10

 if 10

it

it

it it

it

f ω

ω
ω ω
ω ω

=

≤

< ≤

<

 

 

( )
( ){ }

2 ,

max 10 ,0
it i t

i t it it i t

f ω ω

ε ω ω ηω ω
′

′ ′

=

− +
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This function exhibits strict increasing differences (I do not use the term 

complementarities because the function is not differentiable everywhere.) 

 

Proposition. Dynamic inefficiency of assortative matching. 
 

If .03ε < , then for η  sufficiently small, then 2ω  is maximized by negative 

assortative matching in period 0 and assortative matching in period 1. 
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What is the general idea from the example?.   

 

Assortative matching is efficient when one wants to maximizes the average of 

something. For this problem, the period 0 rule should not maximize 1ω  ; it should 

choose the feasible distribution of 1iω  ‘s which is best for maximization of 2ω .  

 

This distribution depends on higher moments of the period one distribution than 

1ω . The shift from negative assortative matching to assortative matching in the 

efficient sorting rule has “real world” analogs, i.e. mixed high schools and 

stratified colleges.  
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What about equilibrium matching? In other words, it is one thing to ask how 

agents should be configured by a social planner who maximizes the sum of 

payoffs across groups. A distinct question is how agents will organize themselves 

in a decentralized environment. In the marriage case, Becker shows that the 

efficient (in terms of aggregate output) equilibrium in terms of male/female 

matches will occur when marriages are voluntary choices, so long as marital 

partners can choose how to divide the output of the marriage. This division of 

marital output is the analogy to market prices that would apply to labor market 

models in which workers are sorted to firms. Similarly, one can show that wages 

can support the efficient allocation of workers when increasing returns are 

absent.   
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Observations 
 

 

First, the link between assortative matching and efficiency produces a good 

example of a fundamental equity/efficiency tradeoff. To be concrete, efficiency in 

marital matches also maximizes the gap between the output of the highest and 

the lowest “quality” marriages.  
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Second, suppose that marital output cannot be arbitrarily divided; assume for 

simplicity that the output is nonrival so that both marriage partners receive it. 

(Parents will understand). Further, rule out transfers between the partners.  The 

ruling out of transfers is important as it means, in essence that neither member of 

the marriage can undo the nonrival payoff of the marriage.   

 

Under these assumptions, assortative matching will still occur, even if it is 

socially inefficient. The assumption that ( ),m wΦ  is increasing in both arguments 

is sufficient to ensure that the highest im  will match with the highest jw , etc. This 

indicates how positive spillovers can create incentives for segregation by 

characteristics even when the segregation is socially inefficient.  Durlauf and 

Seshadri (2003) suggest this possibility; it is systematically and much more 

deeply addressed in Gall, Legros, and Newman (2015).  
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Statistical Mechanics 

 
 

Statistical mechanics is a branch of physics which studies the aggregate 

behavior of large populations of objects, typically atoms.   

 

A canonical question in statistical mechanics is how magnets can appear in 

nature.  A magnet is a piece of iron with the property that atoms tend on average 

to be spinning up or down; the greater the lopsidedness the stronger the magnet.  

(Spin is binary).     
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While one explanation would be that there is simply a tendency for individual 

atoms to spin one way versus another, the remarkable finding in the physics 

literature is that interdependences in spin probabilities between the atoms can, 

when strong enough, themselves be a source of magnetization.   

 

Classic structures of this type include the Ising and Currie-Weiss models. 

 

 

 

 

 

 

Economists of course have no interest in the physics of such systems. On the 

other hand, the mathematics of statistical mechanics has proven to be useful for 

a number of modeling contexts.  As illustrated by the magnetism example, 
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statistical mechanics models provide a language for modeling interacting 

populations.   

 

The mathematical models of statistical mechanics are sometimes called 

interacting particle systems or random fields, where the latter term refers to 

interdependent populations with arbitrary index sets, as opposed to a variables 

indexed by time.  

 

Statistical mechanics models are useful to economists as these methods provide 

a framework for linking microeconomic specifications to macroeconomic 

outcomes.   

 

A key feature of a statistical mechanical system is that even though the individual 

elements may be unpredictable, order appears at an aggregate level.   
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At one level, this is an unsurprising property; laws of large numbers provide a 

similar linkage. However, in statistical mechanics models, properties can emerge 

at an aggregate level that are not describable at the individual level.   

 

Magnetism is one example of this as it is a feature of a system not an individual 

element.  

 

The existence of aggregate properties without individual analogues is sometimes 

known as emergence.   

 

As such, emergence is a way, in light of Sonnenschein-type results on the lack of 

empirical implications to general equilibrium theory, to make progress on 

understanding aggregate behavior in the presence of heterogeneous agents 
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The general structure of statistical mechanics models may be understood as 

follows.   

 

Consider a population of elements aω , where a  is an element of some arbitrary 

index set A.   

 

Let ω  denote vector all elements in the population and aω−  denote all the 

elements of the population other than a .   

 

Concretely, each iω  may be thought of as an individual choice.  
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A statistical mechanics model is specified by the set of probability measures 

 

 ( )a aµ ω ω−  (1) 

 

for all i.  These probability measures describe how each element of a system 

behaves given the behavior of other elements.   
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The objective of the analysis of the system is to understand the joint probability 

measures for the entire system, 

 

 ( )µ ω  (2) 

 

that are compatible with the conditional probability measures.    

 

Thus, the goal of the exercise is to understand the probability measure for the 

population of choices given the conditional decision structure for each choice. 

Stated this way, one can see how statistical mechanics models are conceptually 

similar to various game-theory models, an idea found in Blume (1993). 

 

Dynamic versions of statistical mechanics models are usually modeled in 

continuous time.  One considers the process ( )i tω  and unlike the atemporal 
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case, probabilities are assigned to at each point in time to the probability of a 

change in the current value.   

 

Operationally, this means that for sufficiently small δ  

 

( ) ( ) ( )( ) ( )( ) ( )( ),a a a a at t t f t t oµ ω δ ω δ ω ω ω δ δ−+ + ≠ = +  (3) 

 

 

 

 

 

What this means is that at each t, there is a small probability that ( )i tω  will 

change value, such a change is known as a flip when the support of ( )a tω  is 

binary.  This probability is modeled as depending on the current value of element 
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a as well as on the current (time t) configuration of the rest of the population.  

Since time is continuous whereas the index set is countable, the probability that 

two elements change at the same time is 0 when the change probabilities are 

independent.   
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Systems of this type lead to question of the existence and nature of invariant or 

limiting probability measures for the population, i.e. the study of 

 

 ( ) ( )( )lim 0t tµ ω ω⇒∞  (4) 

 

Discrete time systems can of course be defined analogously; for such systems a 

typical element is ,a tω .   
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Important Caveat 
 

This formulation of statistical mechanics models, with conditional probability 

measures representing the micro-level description of the system, and associated 

joint probability measures the macro-level or equilibrium description of the 

system, also illustrates an important difference between physics and economics 

reasoning.   

 

For the physicist, treating conditional probability measures as primitive objects in 

modeling is natural.  One does not ask “why” one atom’s behavior reacts to other 

atoms.  In contrast, conditional probabilities are not natural modeling primitives to 

an economics.   
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A Math Trick 
 

The conditional probability structure described by (1) can lead to very 

complicated calculations for the joint probabilities (2).  In the interests of 

analytical tractability, physicists have developed a set of methods referred to as 

mean field analyses.   

 

These methods typically involve replacing the conditioning elements in (1) with 

their expected values, i.e. 

 

 ( )( )a aEµ ω ω−  (5) 
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A range of results exist on how mean field approximation relate to the original 

probabilities models they approximate.   

 

From the perspective of economic reasoning, mean field approximations have a 

substantive economic interpretation as they implicitly mean that agents make 

decisions based on their beliefs about the behaviors of others rather than the 

behaviors themselves.   
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Markov Random Fields 
 

 

 

An important class of statistical mechanics models generalizes the Markov 

property of time series to general index sets.  
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Definition 1. Neighborhood. 
 

Let a A∈ . A neighborhood of a  , aN  is defined as a collection of indices such 

that 

 

i. aa N≠  

ii. b aa N b N∈ ⇔ ∈  

 

Neighborhoods can overlap. 
 
The collection of individual neighborhoods provides generalization of the notion 

of a Markov process to more general index sets than time. 

 
Definition 2. Markov random field. 
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Given a set of neighborhoods aN , if a∀  

 

 
( )

( ) ( )a a a b ab N

µ ω

µ ω ω µ ω ω−

⇒

= ∀ ∈
 (2.6) 

 

 then ( )µ ω  is a Markov random field with respect to the neighborhood system. 

 

For binary variables, again coded 1−  and 1, there are some well known 

examples of random fields on dZ  

 

 
 

Hammersley-Clifford Theorem 
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The Hammersley-Clifford theorem provides a general functional form for the 

joint probability measure of a Markov random field when the support of the 

individual random variables is binary.  In order to describe the theorem, it is 

necessary to introduce an additional type of subset of the indices, called a clique. 

 

 
 
 
 
Definition 5. Clique. 

 

Given a neighborhood collection aN , a subset of the indices c  is a clique if 

each member of the set is a neighbor of each of the other members. 
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With the definition of a clique, one can state the Hammersley-Clifford theorem.  
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Hammersley-Clifford theorem. 
 

( )µ ω  is the probability measure of a Markov random field if and only if  

 

 ( ) ( )exp c
c C

Vµ ω ω
∈

 
=  

 
∑  (2.7) 

 

where C  denotes a collection of cliques and the value of ( )cV ω  only depends on 

those elements of ω  whose indices lie in c . 
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Some additional definitions are standard in the statistical mechanics literature.  

 

Definition 6. Potential. 
 

Any set of functions ( )aV ω  defined over all subsets a  of the indices is called a 

potential.   

 
Definition 7. Neighborhood potential. 

 

A potential is a neighborhood potential if ( ) 0aV ω =  is not a clique.   

 
 
 
Definition 8. Gibbs measure. 
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The functional form  ( )exp a
a A

V ω
∈
∑  is called a Gibbs measure.  

 
Definition 9. Neighborhood Gibbs measure. 

 

The functional form ( )exp c
c C

V ω
∈

 
 
 
∑  is called a neighborhood Gibbs measure.   
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When suitably normalized, the Gibbs measures can represent probability 

measures.  Thus, the Hammersley-Clifford theorem states that all Markov 

random fields can be represented by neighborhood Gibbs probability measures. 

 

The basic idea of the proof is to consider  

 

 ( ) ( ) ( )log log 1 Gµ ω ω− − =  (2.8) 

 

( )log 1µ −  denotes the probability of a configuration in which each element 

equals 1− .  Moving from finite to countably infinite index sets is not a problem.  

 

( )G ω  is expanded as 
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( )
( ) ( ) ( )

,
...i a ab a b a b abc a b c a b c

a a b a a b a c a b

G

g g g

ω

ω ω ω ω ω ω ω ω ω ω ω
≠ ≠ ≠

=

+ + +∑ ∑∑ ∑∑ ∑
 (2.9) 

 

The proof involves showing that all g functions that are not associated with 

cliques equal zero. See Cressie (1993) for details. 
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Properties of Statistical Mechanics Models 
 

i. existence 
 

The first question one naturally asks for environments of the type described 

concerns the existence of joint or invariant probability measure over a population 

of elements in which conditional probabilities for the behaviors of the elements 

have been specified.   

 

 

 

 

Existence results of this type differ from classic results such as the Kolmogorov 

extension theorem in that they concern the relationship between conditional 

probabilities and joint probabilities, rather than relationship (as occurs in the 
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Kolmogorov case) between joint probabilities measure on finite sets of elements 

versus an infinite collection that represents the union of the various elements.   

 

Existence theorems are quite technical but do not, in my judgment, require 

conditions that are implausible from the perspective of socioeconomic systems.  
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ii. uniqueness or multiplicity 
 

The existence of a joint or invariant measure says nothing about how many such 

measures exist.   

 

When there are multiple measures compatible with the conditional probabilities, 

the system is said to be nonergodic.  
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Notice that for the dynamical models, the uniqueness question involves the 

dependence of the invariant measure on the initial configuration on ( )0ω  or 0ω .   

 

Heuristically, for atemporal models, nonergodicity is thus the probabilistic analog 

to multiple equilibria whereas for temporal models, nonergodicity is the 

probabilistic analog to multiple steady states. 
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One of the fascinating features of statistical mechanics models is their capacity to 

exhibit nonergodicity in nontrivial cases.  

 

Specifically, nonergodicity can occur when the various direct and indirect 

connections between individuals in a population create sufficient aggregate 

independence across agents.    

 

As such statistical mechanics models use richer interactions structure than 

appear, for example in conventional time series model.   
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To see this, consider a Markov chain where  

 

( ) ( )1 1Pr 1 1 1 and Pr 0 0 1t t t tω ω ω ω− −= = ≠ = = ≠  

 

For this case  

 

( )0lim Prj t jω ω⇒∞ +  will not depend on 0ω .   
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However, suppose that 0I Z Z= × , i.e. the index set is the Cartesian product of 

the non-negative integers with the integers.  I use i  to capture denote the fact 

that its support is a cross product of integer lattices. Suppose that the system has 

a local Markov property of the form 

 

( ) ( ), 1 , 1, 1 , 1 1, 1Pr Pri t t i t i t i t i tω ω ω ω ω ω− − − − + −=


 

 

in words, the behavior of a particular ,i tω  depends on its value at 1t −  as well as 

its “nearest neighbors.”   

 

In this case, it is possible that ( ), 0lim Prj i t jω ω⇒∞ +


 does depend on 0ω


 even 

though no conditional probability ( ), 1, 1 , 1 1, 1Pr i t i t i t i tω ω ω ω− − − + −  equals 1.   
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The reason for this is that in the case of an evolving set of Markov processes, 

there are many indirect connections.   

 

For example, the realization of 2, 2i tω − −  will affect ,i tω  because of its effect on 

1, 1i tω − − ; no analogous property exists when there is a single element at each point 

in time.   

 

In fact, the number of elements at time t k−  that affect ,i tω  is, in this example, 

growing in k.  

 

 

 

This does mean that such a system necessarily has multiple invariant measures, 

merely that it can when there is sufficient sensitivity of 
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( ) ( ), 1 , 1, , 1 1, 1Pr Pr , ,i t t i t i t i t i tω ω ω ω ω ω− − − + −=


 to the realizations of 

1, , 1 1, 1 and i t i t i tω ω ω− − + − .  

 

For many statistical mechanics models, this dependence can be reduced to a 

single parameter.   
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For example the Ising model may be written  

 

( )
1

Pr expi i j
i j

Jω ω ω−
− =

 
∝   

 
∑ ; 

 

so J fully characterizes the degree  of interdependence. 

 

In one dimension, the model is always ergodic, outside of trivial cases whereas 

for 2 dimensions it may not be.  
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In statistical mechanics model, one often finds threshold effects, i.e. when J is 

below some J J< ,  the system exhibits a unique invariant measure, whereas if 

J J> , multiple measures exist. 
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Another statistical mechanics model is the Curie Weiss model: 

 

( ) ( )Pr expi i iJω ω ω− −∝ ; 

 

Where iω−  is the average of the system elements other than i. (And yes, I am 

skipping technical details since there are an infinite number of elements). 

 

The mean field approximation for this model is 

 

( ) ( )Pr expi i JEω ω ω− ∝  

 

Spin Glasses 
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Some statistical mechanics models are based on general formulations of the 

form 

 

 ( ) expi i ij i j
i j

Jµ ω ω ωω−
≠

 
∝  

 
∑  (10) 

 

 

 

In physics. ijJ  is usually treated as a random variable. When it can take on 

positive and negative values, this system is called a spin glass. 
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Spin glasses can exhibit “frustration” which means that interactions can be 

conflicting.  
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Modeling Social Interactions 
 

We consider I  individuals who are members of a common group g.  Our 

objective is to probabilistically describe the individual choices of each i, iω  (a 

choice that is taken from the elements of some set of possible behaviors iΩ ) and 

thereby characterize the vector of choices of all members of the group, ω .   

 

From the perspective of theoretical modeling, it is useful to distinguish between 

three sorts of influences on individual choices.  These influences have different 

implications for how one models the choice problem.  

 

 

These components are  
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ih , a vector of deterministic (to the modeler) individual-specific characteristics 

associated with individual i ,   
 

iε , a vector of random individual-specific characteristics associated with i , i.i.d. 

across agents, 

 

and  

 

( )e
iµ ω , the subjective beliefs individual i  possesses about behaviors in the 

group, expressed as a probability measure over those behaviors.  

Individual choices iω  are characterized as representing the maximization of 

some payoff function V , 

 

 ( )( )argmax , , ,
i

e
i i i iV hλω λ µ ω ε∈Ω=  (11) 
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The decision problem facing an individual as a function of preferences (embodied 

in the specification of V ), constraints (embodied in the specification of iΩ ) and 

beliefs (embodied in the specification of  ( )e
iµ ω ).   

 

As such, the analysis is based on completely standard microeconomic reasoning 

to describe individual decisions. 

 

 
Beliefs 

 
This basic choice model is closed by imposing self-consistency between 

subjective beliefs ( )e
iµ ω  and the objective conditional probabilities ( )| iFµ ω , 

where iF  denotes the information available to agent i .  We assume that agents 
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know the deterministic characteristics of others as well as themselves and also 

understand the structure of the individual choice problems that are being solved.   

 

 

 

 

 

This means that subjective beliefs obey 

 

 ( ) ( )( ),  e e
i j jh jµ ω µ ω µ ω= ∀  (12) 

 

where the right hand of this equation is the objective conditional probability 

measure generated by the model; self-consistency is equivalent to rational 

expectations in the usual sense.   
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From the perspective of modeling individual behaviors, it is typically assumed 

that agents do not account for the effect of their choices on the decisions of 

others via expectations formation.  

 

In this sense, this framework employs a Bayes-Nash equilibrium concept. 
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A Multinomial Logit Approach to Social Interactions 

 

 

 

 

1. Each agent faces a common choice set with L  discrete possibilities, 

i.e. { }0,1, , 1i LΩ = − . 
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2. Each choice l  produces a payoff for i  according to: 

 

 , , , ,
e

i l i l i l i lV h Jp ε= + +  (13) 
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3. Random utility terms ,i lε  are independent across i  and l  and are doubly 

exponentially distributed with index parameter β , 

 

 ( ) ( )( ), exp expi lµ ε ς βς γ≤ = − − +  (14) 

 

where γ  is Euler’s constant. 
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Characterizing Choices 
 

These assumptions may be combined to produce a full description of the choice 

probabilities for each individual. 

 

 
( )

( )
, ,

{0... 1} , , , , ,

,

argmax ,

e
i i j i j

e e
j L i j i j i j i j i j

l h p j

h Jp l h p j

µ ω

µ ε∈ −

= ∀ =

+ + = ∀
 (15) 
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The double exponential assumption for the random payoff terms leads to the 

canonical multinomial logit probability structure  

 

 ( ) ( )
( )

, ,
, , 1

, ,
0

exp
,

exp

e
i l i le

i i j i j L
e

i j i j
j

h Jp
l h p j

h Jp

β β
µ ω

β β
−

=

+
= ∀ =

+∑
 (16) 

So the joint probabilities for all choices may be written as 

 

   

( )
( )
( )

1 1 , ,

, ,
1

, ,
0

,..., , ,

exp

exp

i i

e
I I i j i j

e
i l i l

L
ei

i j i j
j

l l h p i j

h Jp

h Jp

µ ω ω

β β

β β
−

=

= = ∀ =

+

+
∏
∑

 (17) 

   

Self-Consistency of Beliefs 
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Self-consistent beliefs imply that the subjective choice probabilities e
lp  equal the 

objective expected values of the percentage of agents in the group who choose 

l , lp , the structure of the model implies that 

 

 
( )
( )

,
, 1

,
0

exp

exp

i l le
i l l hL

i j j
j

h Jp
p p dF

h Jp

β β

β β
−

=

+
= =

+
∫
∑

 (18) 

 

where hF  is the empirical probability distribution for the vector of deterministic 

terms ,i lh .  
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It is straightforward to verify that under the Brouwer fixed point theorem, at least 

one such fixed point exists, so this model always has at least one equilibrium set 

of self-consistent aggregate choice probabilities. 
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Characterizing Equilibria 
 

To understand the properties of this model, it is useful to focus on the special 

case where , 0 ,i lh i l= ∀ .  For this special case, the choice probabilities (and 

hence the expected distribution of choices within a group) are completely 

determined by the compound parameter Jβ .   

 

An important question is whether and how the presence of interdependencies 

produces multiple equilibria for the choice probabilities in a neighborhood.  
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In order to develop some intuition as to why the number of equilibria is connected 

to the magnitude of Jβ , it is helpful to consider two extreme cases for the 

compound parameter, namely 0Jβ =  and Jβ = ∞.    

 

For the case 0Jβ = , one can immediately verify that there exists a unique 

equilibrium for the aggregate choice probabilities such that 
1

lp
L

=  l∀ . This 

follows from the fact that under the assumption that all individual heterogeneity in 

choices come from the realizations of ,i lε , a process whose elements are 

independent and identically distributed across choices and individuals.  Since all 

agents are ex ante identical, the aggregate choice probabilities must be equal.   
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The case Jβ = ∞  is more complicated.  The set of aggregate choice probabilities 

1
lp

L
=  is also an equilibrium if Jβ = ∞  since conditional on these probabilities, 

the symmetries in payoffs associated with each choice that led to this equilibrium 

when 0Jβ =  are preserved as there is no difference in the social component of 

payoffs across choices.   
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However, this is not the only equilibrium. To see why this is so, observe that for 

any pair of choices l  and l ′ for which the aggregate choice probabilities are 

nonzero, it must be the case that 

 

 
( )
( )

exp
exp

ll

l l

Jpp
p Jp

β
β′ ′

=  (19) 

 

for any Jβ . This follows from the fact that each agent is ex ante identical.  Thus, 

it is immediate that any set of equilibrium probabilities that are bounded away 

from 0 will become equal as Jβ ⇒ ∞ .   

 

This condition is necessary as well as sufficient, so any configuration such that 

1
lp

b
=  for some subset of b choices and 0lp =  for the other L b−  choices is 

an equilibrium.  Hence, for the case where J = ∞ , there exist  
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1
2 1

L
L

b

L
b=

 
= − 

 
∑  

 

different equilibrium probability configurations.   Recalling that β  indexes the 

density of random utility and J measures the strength of interdependence 

between decisions, this case, when contrasted with 0Jβ =  illustrates why the 

strength of these interdependences and the degree of heterogeneity in random 

utility interact to determine the number of equilibria. 

 

These extreme cases may be refined to produce a more precise characterization 

of the relationship between the number of equilibria and the value of Jβ .  
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Theorem 1.  Multiple equilibria in the multinomial logit model with social 
interactions 
 
Suppose that individual choices are characterized by eq. (12) with self-consistent 

beliefs, i.e., that beliefs are consistent with eq. (14)Assume that ,  ,i lh k i l= ∀ . 

Then there will exist at least three self-consistent choice probabilities if 1J
L
β

> . 

 

 

 

When 2L = , this theorem reduces to the characterization of multiple equilibria 

with binary choices in Brock and Durlauf (2001a). 

 

I will exposit this model for comparison; note that the support of the choices is -

1,1 
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Comments 

 

1. There is an interplay of the degree of unobserved heterogeneity and the 

strength of social interactions that determines the number of equilibria. 

 

2. This is an example of a phase transition 

 

3. The threshold for multiplicity depends on the number of choices.  

 

 

 

 

 
Multinomial Choice Under Alternative Error Assumptions 
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The basic logic of the multinomial model is straightforward to generalize.  This 

can be seen if one considers the preference structure 

 

 1
, , , ,

e
i l i l i l i lV h Jp β ε−= + +  (20) 
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This is the same preference structure we worked with earlier, except that β  is 

now explicitly used to index the intensity of choice (in the McFadden sense) 

rather than as a parameter of the distribution of the random payoff term ,i lε .   

 

We assume that these unobserved utility terms are independent and identically 

distributed with a common distribution function ( )Fε ⋅ . 
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For this model, the probability that agent i  makes choice l  is  

 

 
( ) ( )
( ) ( )

,0 , , ,0 , ,0

, 1 , , , 1 , , 1

,...,e e
i i l i l i i l i

e e
i L i l i l i L i l i L

h h J p p

h h J p p

ε ε β β
µ

ε ε β β− − −

 − ≤ − + −
 
 − ≤ − + − 

 (21) 
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Following Anderson, dePalma, and Thisse (1992, pg. 36), conditional on a 

realization of ,i lε , the probability that l  is chosen is 

 

 ( ), , , , ,
e e

i l i j i l i j i l
j i

F h h Jp Jpε β β β β ε
≠

− + − +∏  (22) 

 

which immediately implies that the probability of the choice l  without conditioning 

on the realization of ,i lε  is 

 

( ), , , , ,
e e

i l i l i j i l i j
j l

p F h h Jp Jp dFε εβ β β β ε
≠

= − + − +∏∫ .(23) 
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Eqs. (16)-(19) provide a multinomial choice model whose structure is fully 

analogous to the multinomial logit structure developed under parametric 

assumptions. Under self-consistency, the aggregate choice probabilities of this 

general multinomial choice model are the solutions to  

  

( )l l j l j h
j l

p F h h Jp Jp dF dFε εβ β β β ε
≠

= − + − +∏∫ ∫ (24) 

 

As in the multinomial logit case, the compound parameter Jβ  plays a critical role 

in determining the number of self-consistent equilibrium choice probabilities lp .  

This finding is formalized in Theorem 2. 
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Theorem 2. Uniqueness versus multiplicity of self-consistent equilibria in 
multinomial choice models with social interactions  
 

Suppose that individual choices and associated self-consistent equilibria are 

described by (19)-(20).  Assume that , 0i lh =  ,i l∀  and ,i lε  are independent 

across i  and l . There exists a threshold T such that if J Tβ < , then there is a 

unique self-consistent equilibrium, whereas if J Tβ >  there exist at least three 

self-consistent equilibria. 
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The relationship between Jβ  and the number of equilibria is less precise than 

was found in Theorem 1, the multinomial logit case, as Theorem 3 does not 

specify anything about the way in which L , the number of available choices, 

affects the number of equilibria.  This lack of precision is to be expected since we 

did not specify the distribution of the errors. 
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 Groups Choice and Behavior Choice 
 

Our analysis so far has treated groups as predetermined.  For contexts such as 

ethnicity or gender this is presumably appropriate.  

 

However, in other contexts, such as residential neighborhoods, group 

memberships are themselves presumably influenced by the presence of social 

interactions effects.  Hence a complete model of the role of social interactions on 

individual and group outcomes requires a joint description of both the process by 

which neighborhoods are formed and the subsequent behaviors they induce.   

 

A Nested Choice Approach to Integration of Behaviors and Group 
Memberships 
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A second approach to endogenizing group memberships may be developed 

using the nested logit framework originated by Ben Akiva (1973) and McFadden 

(1978).  The basic idea of this framework is the following.  An individual is 

assumed to make a joint decision of a group {0,... 1}g G∈ −  and a behavior 

{0,... 1}l L∈ − . We will denote the group choice of i  as iδ .   
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The structure of this joint decision is nested in the sense that the choices are 

assumed to have a structure that allows one to decompose the decisions as 

occurring in two stages: first, the group is chosen and then the behavior.   
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The key feature of this type of model is the assumption that choices at each 

stage obey a multinomial logit probability structure. For the behavioral choice, 

this means that 

 

( ) ( )
( )

, , , ,
, , , , 1

, , , ,
0

exp
, ,

exp

e
i l g i l ge

i i l g i l g i L
e

i l g i l g
j

h Jp
l h p g

h Jp

β
µ ω δ

β
−

=

+
= = =

+∑
(25) 

 

which is the same behavioral specification as before.  
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Group membership choices are somewhat more complicated. In the nested logit 

model, group choices are assumed to obey 

 

 ( ) ,
, , , ,

,

exp( )
, ,

exp( )
g i ge

i l g i l g
g i g

g

Z
i g h p l g

Z
β

µ
β

∈ ∀ =
∑

 (26) 

 

where 

 

 , , , , , , ,(max )e
i g l i l g i l g i l gZ E h Jp ε= + +  (27) 
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A standard result (e.g. Anderson, de Palma and Thisse (1992, pg. 46)) is that 

 

 
( )( )

( )

, , , , , , , , ,

1
, , , ,

max , ,

log exp

e e
i l g i l i l g i l g i l g

e
i l g i l g

l

E h Jp h p l g

h Jp

ε

β β−

+ + ∀ =

 + 
 
∑

 (28) 
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Combining equations, the joint group membership and behavior probabilities for 

an individual are thus described by  

 

 

( )

( )

( )

( )
( )

, , , ,

1
, , , ,

1
, , , ,

, , , ,
1

, , , ,
0

, , ,

exp log exp

exp log exp

exp

exp

e
i i i l n i l n

e
n i l n i l n

l

e
n i l n i l n

n l

e
i l n i l n

L
e

i l n i l n
j

l n h p l n

h Jp

h Jp

h Jp

h Jp

µ ω δ

β β β

β β β

β

β

−

−

−

=

= = ∀ =

  +  
   ⋅

  +  
  

+

+

∑

∑ ∑

∑  (29) 
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This probabilistic description may be faulted in that it is not directly derived from a 

utility maximization problem. In fact, a number of papers have identified 

conditions under which the probability structure is consistent with utility 

maximization, cf. McFadden (1978) and Borsch-Supan (1990) for discussion. A 

simple condition (cf. Anderson, dePalma, and Thisse, 1992, pg. 48) that renders 

the model compatible with a well posed utility maximization problem is nβ β≤ , 

which in essence requires that the dispersion of random payoff terms across 

groups is lower than the dispersion in random payoff terms across behavioral 

choices within a group.  
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There has yet to be any analysis of models such as (36) when self-consistency is 

imposed on the expected group choice percentages , ,
e
i l gp . Such an analysis 

should provide a number of interesting results. For example, a nested structure 

of this type introduces a new mechanism by which multiple equilibria may 

emerge, namely the influence of beliefs about group behaviors on group 

memberships, which reciprocally will affect behaviors.  This additional channel for 

social interactions, in turn, raises new identification questions. 

 

Comment: Existence may require membership “prices” 
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State of Literature 
 

 

1. Social interactions may be integrated into standard choice models in ways 

that preserve neoclassical reasoning, yet allow for phenomena such as 

multiple equilibria 

 

2. Much left to do, especially for nested choice generalizations that integrated 

group formation and behavior in groups. Social networks are even harder to 

integrate. 
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