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Econometrica, Vol. 75, No. 4 (July, 2007), 1073-1102 

BEAUTY IS A BEAST, FROG IS A PRINCE: ASSORTATIVE 
MATCHING WITH NONTRANSFERABILITIES 

BY PATRICK LEGROS AND ANDREW E NEWMAN1 

We present sufficient conditions for monotone matching in environments where util- 
ity is not fully transferable between partners. These conditions involve not only comple- 
mentarity in types of the total payoff to a match, as in the transferable utility case, but 
also monotonicity in type of the degree of transferability between partners. We apply 
our conditions to study some models of risk sharing and incentive problems, deriving 
new results for predicted matching patterns in those contexts. 

KEYWORDS: Assortative matching, nontransferable utility, risk sharing, intrahouse- 
hold allocation, principal-agent. 

1. INTRODUCTION 

FOR THE ECONOMIST analyzing household behavior, firm formation, or the 
labor market, the characteristics of matched partners are paramount. The ed- 
ucational background of men and women who are married, the financial posi- 
tions of firms that are merging, or the productivities of agents who are working 
together all matter for understanding their respective markets. Matching pat- 
terns serve as direct evidence for theory, figure in the econometrics of selection 
effects, facilitate theoretical analysis, and are even treated as policy variables. 

Much is known about characterizing matching in the special case of trans- 
ferable utility (TU). For instance, if the function representing the total pay- 
off to the match satisfies increasing (decreasing) differences in the partners' 
attributes, then there will always be positive (negative) assortative matching, 
whatever the distribution of types. Because they are distribution-free, results 
of this sort are very powerful and easy to apply. 

However, in many areas of economic analysis, the utility among individuals 
is not fully transferable (nontransferable or NTU). Partners may be risk averse 
with limited insurance possibilities, incentive or enforcement problems may 
restrict the way in which the joint output can be divided, or policy makers may 
impose rules about how output may be shared within relationships. As Becker 
(1973) pointed out long ago, rigidities that prevent partners from costlessly 
dividing the gains from a match may change the matching outcome, even if the 
level of output continues to satisfy monotone differences in type. 

'We thank Ken Binmore, Patrick Bolton, Maristella Botticini, Bengt Holmstrom, Hide 
Ichimura, Boyan Jovanovic, Eric Maskin, Meg Meyer, Nicola Pavoni, Wolfgang Pesendorfer, Ilya 
Segal, Lones Smith, a co-editor, and three anonymous referees, as well as seminar participants 
at Berkeley, Bonn, BU, Caltech, Gerzensee, Harvard/MIT, Northwestern, Princeton, Stanford, 
Toulouse, UCL, UCSD, UCSB, and ULB, for useful comments and discussion. Legros benefited 
from the financial support of the Communaut6 Franqaise de Belgique (projects ARC 98/03-221 
and ARC 00/05-252) and EU TMR Network contract of FMRX-CT98-0203. Newman acknowl- 
edges support as the Richard B. Fisher Member, Institute for Advanced Study, Princeton, and as 
a Peter B. Kenen Fellow, Department of Economics, Princeton University. 
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1074 P. LEGROS AND A. E NEWMAN 

Although interest in the issues represented by the nontransferable case is 
both longstanding and lively (see, for instance, Farrell and Scotchmer (1988) 
on production in partnerships, Rosenzweig and Stark (1989) on risk sharing in 
households, and more recently, Lazear (2000) on incentive schemes for work- 
ers, Ackerberg and Botticini (2002) on sharecropping, and Besley and Ghatak 
(2005) on the organizational design of nonprofit firms), for the analyst seeking 
to characterize the equilibrium matching pattern in such settings, there is little 
theoretical guidance. 

The purpose of this paper is to offer some. We present sufficient conditions 
for assortative matching that are simple to express, intuitive to understand, 
and, we hope, tractable to apply. We illustrate their use with some examples 
that are of independent interest. 

The class of models we consider is two-person matching games without 
search frictions in which the utility possibility frontier for any pair of agents is a 
strictly decreasing function. After introducing the model, we review the logic of 
the classical transferable utility results, which leads us to propose the "general- 
ized difference conditions" (GDC) that suffice to guarantee monotone match- 
ing for any type distribution (Proposition 1). 

We also present sufficient differential conditions for monotone matching 
(Corollary 1). In addition to being straightforward to verify, the differential 
conditions offer additional insight into the forces that govern matching. In 
particular, they highlight the role not only of the complementarity in partners' 
types that figures in the TU case, but also of a complementarity between an 
agent's type and his partner's payoff that is the new feature in the NTU case. This 
second complementarity entails that the degree of transferability (i.e., slope of 
the frontier) be monotone in type. Even if the output satisfies increasing dif- 
ferences in types, failure of the type-payoff complementarity may overturn the 
predictions of the TU model and lead instead to negative assortative matching 
or some more complex and/or distribution-dependent pattern. 

Two examples illustrate the application of our general results. The first is a 
marriage market model in which partners vary in risk attitude and must share 
risks within their households. Sorting effects in this kind of model are impor- 
tant considerations in the econometrics of marriage and migration (Rosen- 
zweig and Stark (1989)). Using the GDC, we show that partners will sort nega- 
tively in their Arrow-Pratt degree of risk tolerance. The differential conditions 
are applied to the second example, a principal-agent model in which agents 
vary in their initial wealth, and principals vary in the riskiness of their projects. 
Matching effects in such a model are of direct interest in some applications 
(e.g., Newman (forthcoming), Prendergast (2002)) and have been offered as 
explanations for some seemingly puzzling empirical results (Ackerberg and 
Botticini (2002)). In this example, the type-transferability relationship alone 
is responsible for the predicted matching pattern, which goes in a (possibly) 
unexpected direction. 

Finally, we discuss the strength of the GDC, pointing out that they are ordi- 
nal conditions (Proposition 2), which broadens the scope of applicability of the 
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ASSORTATIVE MATCHING WITH NONTRANSFERABILITIES 1075 

local conditions; that they are necessary if one seeks a distribution-free con- 
dition for assortative matching (Proposition 3); and their distinction from es- 
tablished conditions in the literature (Sections 6.3 and 7.3). Section 7 discusses 
extensions of our results to variations of the standard matching framework, 
and Section 8 concludes. 

The next section delves further into the ideas that underlie the general the- 
oretical analysis by examining a very simple example inspired by the one in 
Becker (1973). 

2. AN ILLUSTRATIVE EXAMPLE 

Suppose there are two types of men, p' < p, and two types of women, a' < a. 
The total "output" they produce when matched, as a function of the partners' 
types, is described by the matrix 

a' a 
p' 4 7 
p 79 

Because 9 - 7 < 7 - 4, the joint payoff function satisfies decreasing differ- 
ences (DD). If payoffs are fully transferable, then it is well known that de- 
creasing differences implies that a stable outcome will always involve nega- 
tive assortative matching (NAM): high types will match with low types. If, to 
the contrary, we had a positive match of the form (p', a'), (p, a) with equi- 
librium payoffs (Tr(p'), wo(a')) and (7r(p), wo(a)), then there would always be 
a pair of types that could do strictly better for themselves: wc(a') + wo(a) = 
(4 - r(p')) + (9 - r(p)) < (7 - ir(p')) + (7 - r(p)); thus w(a) < 7 - r(p') 
or to (a') < 7- ir(p); a' could offer p (or a' could offer p) slightly more than his 
current payoff and still get more for herself, destabilizing the positive match. 
The negative matching outcome maximizes total output. 

Suppose instead that utility is not perfectly transferable, and consider the 
extreme case in which any departure from equal sharing within the marriage is 
impossible. For instance, the payoff to the marriage could be generated by the 
joint consumption of a local public good. Thus each partner in (p, a) gets 4.5, 
each in (p, a') gets 3.5, and so forth. Now the only stable outcome is positive 
assortative matching (PAM): each p is better off matching with a (4.5) than 
with a' (3.5), and thus the "power couple" blocks a negative assortative match. 
As Becker noted, with nontransferability, the match changes and aggregate 
performance suffers as well. 

Of course this extreme form of nontransferability does not represent many 
situations of economic interest. What happens in the broad intermediate 
range? Introduce a dose of transferability by supposing that some compen- 
sation, say through the return of favors, makes it possible to depart from equal 
sharing. Consider two simple cases. In the first, the high types are "difficult," 
while the low types are "easy": beauty is a beast, frog is a prince. That is, utility 
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FIGURE 2.1.-Utility possibility frontiers. 

is perfectly transferable between p' and a', p' can transfer to a, but not vice 
versa, and a' can transfer to p but not vice versa. In the second case, the high 
types are easy and the low types are difficult. See Figure 2.1, which depicts the 
utility possibility frontiers between pairs of types, assuming feasible transfers 
are made starting from the equal sharing point. 

In the first case, the degree of transferability is decreasing in type and, in 
particular, is changing in the same direction as (marginal) productivity. The 
unique outcome is NAM in this case: if things were otherwise, a high type 
could promise a low type almost 2.5, garnering a bit over 4.5 for himself, and 
the low type would accept the offer (the only way this could not happen is if 
both a' and p' were getting at least 2.5, which is an impossibility). 

In the second case, the degree of transferability is increasing in type, opposite 
the direction that productivity increases, and this opposition between produc- 
tivity and transferability is enough to overturn the TU outcome. The easygoing 
high types now can get no more than 3.5 out of a mixed relationship, so they 
prefer a match with each other, wherein 4.5 would be available to each.2 

The basic intuitions contained in this example carry over to the general case 
and are, in a nutshell, the content of our main results, Proposition 1 and Corol- 

2This begs the question of how much transferability is needed for NAM. We leave it to the 
reader to verify that if low types can transfer at a rate 3, then there is */3 (0, 1) such that /3 > 3* 
implies NAM and P < P* implies PAM. 
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ASSORTATIVE MATCHING WITH NONTRANSFERABILITIES 1077 

lary 1.3 Transferability and its dependence on type can be as important as pro- 
ductivity in determining the nature of sorting. 

3. THE MODEL 

The economy is populated by a finite number of agents who differ in type, 
which is taken to be a real-valued attribute such as skill, wealth, or risk attitude. 
For expositional ease we focus on two-sided models, where agents are also dis- 
tinguished by a binary "gender" (man-woman, firm-worker, etc.), but as we 
discuss in Section 7.2, the results can also be applied to one-sided models. Pay- 
offs that exceed those obtained in autarchy, which for the general analysis we 
normalize to zero for all types,4 are generated only if agents of opposite gender 
match. 

Let I be the set of agents on one side of the market and let J be the set of 
agents on the other. The description of a specific economy includes an assign- 
ment of individuals to types via maps p:I -+ P and a: J -- A, where P and 
A are compact subsets of •R. To simplify the exposition, we assume that I and 
J have the same cardinality. (This is basically without loss of generality; see 
Section 7.1.) 

The object of analytical interest is the utility possibility frontier (in equilib- 
rium agents will always select an allocation on this frontier) for each possi- 
ble pairing of agents. This frontier will be represented by a bounded contin- 
uous function 0:P x A x R -* R+; 4)(p, a, v) denotes the maximum utility 
generated by a type p E P in a match with a type a E A who receives util- 
ity v. The maximum equilibrium payoff that p could ever get in a match with 
a is 0 (p, a, 0), because a would never accept a negative payoff. We assume 
throughout that 0 (p, a, 0) is positive for all (p, a) and that ( (p, a, v) is strictly 
decreasing in v whenever 4 (p, a, v) is positive.5 

3The only difference is that we shall require the frontiers to be strictly decreasing; the above 
examples could easily be modified to conform to this requirement without changing any conclu- 
sion. 

4In many applications, the autarchy payoff varies with type. The analysis extends to this case 
almost without modification: see Section 7.1. 

5 Although we take ( to be a primitive of the model for the general analysis, it typically will be 
derived from more fundamental assumptions about technology, preferences, and choices made 
by the partners after they match, as in the examples in Section 5. The frontier generally can be 
expressed as 

((p, a, v) = max U(x, p, a) 

s.t. V(x, a, p) > v, 

x e D(p, a), 

where U is the utility of the agent in I, V the utility of the agent in J, x the choice variables, 
and Q(p, a) C I1n the choice set. The frontier will have the indicated properties if, for instance, 
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1078 P. LEGROS AND A. E NEWMAN 

Let 41(a, p, -) be the quasi-inverse of 0(p, a, .): 0f(a, p, u) is the maximum 
payoff to a type a when his type-p partner receives utility u. For any p e P, 
a E A, if u e [0, b(p, a, 0)], iqj(a, p, u) solves 04(p, a, qfr(a, p, u)) = u, and if 
u > 0(p, a, 0), ip(a, p, u) = 0. In general, of course, 4(p, a, w) = i(a, p, w). 

We shall sometimes refer to the first argument of 0 and 1' as own type, the 
second argument as partner's type, and the third argument as payoff. 

The notation reflects two further assumptions of matching models, namely 
(1) that the payoff possibilities depend only on the types of the agents and 
not on their individual identities, and (2) the utility possibilities of the pair of 
agents do not depend on what other agents in the economy are doing, that is, 
there are no externalities across coalitions. 

The model encompasses the case of transferable utility (TU), in which there 
exists a production function h(a, p) such that 4 (p, a, v) can be written as 
h(p, a) - v for v e [0, h(p, a)]. In all other cases, we have nontransferable 
utility (NTU). 

Our concept of equilibrium is the core of the assignment game: it requires 
that agents in I are matched to agents in J in a stable way. 

DEFINITION 1: Payoffs (u, v) are feasible for (p, a) E P x A if u 
_ 

4)(p, a, v) 
and v < 0(a, p, 0). 

DEFINITION 2: An equilibrium specifies a one-to-one matching function 
m : I -+ J and payoff allocations 7r*: I -R IR+ and w*:J --+ R, that satisfy the 
following two conditions. 

(i) Feasibility of (iT*, o*) with respect to m: for all i e I, (7*(i), "w*(m(i))) is 
feasible for (p(i), a(m(i))). 

(ii) Stability of m with respect to (1r*, w*): there do not exist (i, j) e I x J 
and v > o*(j) such that 40(p(i), a(j), v) > 7T*(i). 

Existence of equilibria in this class of economies has been established else- 
where (Kaneko (1982)). 

Because 0 (p, a, v) is strictly decreasing in v on (0, qf(a, p, 0)), an equilib- 
rium satisfies equal treatment: if two agents with the same type had unequal 
equilibrium payoffs, it would be possible for the worse treated to underbid the 
better treated, contradicting stability. Thus, the equilibrium payoff functions 

7T* and o* depend only on the individual's type, and it is enough to define type- 
dependent payoff functions r: P --+ R. and w: A -+ R+ as 7r(p) = r*(p(i)) 
when p(i) = p for i E I and w(a) = w*(a(j)) when a(j) = a for j E J. 

U and V are continuous and locally nonsatiated, f2(p, a) is continuous, and for each (p, a), 
2(p, a) has nonempty relative interior and contains a point xpa such that U(xpa, p, a) > 0 and 

V(xpa, a, p) > 0. 
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Concepts of monotone matching are defined with respect to the matching 
correspondence between types. The matching function m: I --+ J generates a 
matching correspondence on types 9)1: P :: A: 

9Y(p) = {a(j), j E J:3i E I, p(i) = p and j = m(i)}. 

We say that 9A1 is stable given (ir, w) if there do not exist (p, a) and v > w (a) 
such that 4(p, a, v) > iT(p). 

When 9)1 is a monotone correspondence, matching is monotone. In two-sided 
models, there are only two types of monotone matching. An equilibrium dis- 
plays positive assortative matching (PAM) if p > p', a e 

9•)(p), 
a' e 9)T(p') -~- 

a > a'. There is negative assortative matching (NAM) if p > p', a E 9)1(p), a' e 
9)(p') ==- a' > a. 

Say that an equilibrium is payoff equivalent to another if all agents have the 
same payoff in each equilibrium. We say an economy satisfies PAM (NAM) if 
each equilibrium is payoff equivalent to one in which the match satisfies PAM 
(NAM). 

4. SUFFICIENT CONDITIONS FOR MONOTONE MATCHING 

4.1. Logic of the TU Case 

Recall the conventional transferable utility result, because that will provide 
guidance to the general case. In the TU case, only the total payoff h(p, a) 
is relevant. The assumption that is often made about h is that it satisfies in- 
creasing differences (ID): whenever p > p' and a > a', h(p, a) - h(p, a') > 
h(p', a) - h(p', a'). Why does this imply positive assortative matching, irre- 
spective of the distribution of types? Usually, the argument is made by noticing 
that the total output among the four types is maximized (a necessary condition 
of equilibrium in the TU case, but not, we should emphasize, in the case of 
NTU) when p matches with a and p' matches with a': this is evident from 
rearranging the ID condition. 

However, it is more instructive to analyze this from the equilibrium point of 
view. Suppose that a and a' compete for the right to match with p rather than 
p'. The increasing difference condition says that a can outbid a' in this com- 
petition, because the incremental output produced if a switches to p exceeds 
that when a' switches to p. In particular, this is true whatever the level of utility 
u that p' might be receiving: rewrite (strict) ID as h(p, a) - [h(p', a) - u] > 
h(p, a') - [h(p', a') - u]; this is literally the statement that a's willingness to 
pay for p, given that p' is getting u, exceeds a"s. Thus a situation in which p is 
matched with a' and p' is matched with a is never stable: a will be happy to of- 
fer more to p than the latter is getting with a'. The ID result is distribution-free: 
the type distribution will affect the equilibrium payoffs, but the argument just 
given shows that p's partner must be larger than p"s regardless of what those 
payoffs might be. 
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The convenient feature of TU is that if a outbids a' at one level of u, he does 
so for all u. Such is not the case with NTU. Our sufficient condition will require 
explicitly that a can outbid a' for all relevant levels of u. If this requirement 
seems strong, recall that the nature of the result sought, namely monotone 
matching regardless of the distribution, is also strong. By the same token, it is 
weaker than ID and includes TU as a special case. 

In an NTU model, the division of the surplus between the partners cannot 
be separated from the level that they generate. Switching to a higher type part- 
ner may not be attractive if it is also more costly to transfer utility to a high 
type, that is, if the frontier is steeper. A sufficient condition for PAM is that in 
addition to the usual type-type complementarity in the production of surplus, 
there is a type-payoff complementarity: frontiers are flatter for higher types. 
This will perhaps be more apparent from the local form of our conditions. 

4.2. Generalized Difference Conditions 

Let p > p' and a > a', and suppose that p' were to get u. Then the above 
reasoning would suggest that a would be able to outbid a' for p, given that p' 
has a given outside option of u, if 

(4.1) ((p, a, qif(a, p', u)) > ~ (p, a', 0 (a', p', u)). 

The left-hand side is a's willingness to "pay" (in utility terms) for p, given 
that p' receives u: a then receives v = 41r(a, p', u), so p would get 4(p, a, v) 
if matched with a. The right-hand side is the counterpart expression for p': a' 
receives v' = qJ(a', p', u), so p would get 4(p, a', v') if matched with a'.6 

When satisfied by any p > p', a > a', and u feasible for (p', a), condition 
(4.1) is called generalized increasing differences (GID). The concept is illustrated 
in Figure 4.1. The frontiers for the matched pairs (p', a'), (p', a), (p, a), and 
(p, a') are plotted in a four-axis diagram. The compositions in (4.1) are indi- 
cated by following the arrows around from a level of utility u for p'. Note that 
the utility p obtains on the "a side" exceeds that on the a' side of the diagram. 
So an equivalent way to state the condition is that whenever a low type p' is 
indifferent between two agents a and a', a higher type p will (weakly) prefer 
the higher type a when he guarantees both agents the same feasible payoffs 
that they would obtain with p': 

(4.2) ((p', a', v') = 0(p', a, v) 40(p, a, v) > •(p, a', v'). 

60Obviously the reasoning can be made in terms of p and p' competing for a; in this case the 
GID condition is 

qJ(a, 
p, 4 (p, a', v)) 

>_ 
#(a, p', (p', a', v)); 

it is straightforward to verify that the two conditions are equivalent. In applications, it may be 
easier to verify the condition from the point of view of one side rather than the other. 
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w(a) 

p, a,(a,,u)) (p) 

w(a') 

FIGURE 4.1.-Generalized increasing differences. 

Thus, GID is a kind of a single-crossing condition, and as we have mentioned 
and will show below, is an ordinal property. 

Our main result states that GID is sufficient for PAM in the sense that all 
equilibria are payoff equivalent to a PAM equilibrium. There is an analogous 
condition, generalized decreasing differences (GDD), for NAM. 

PROPOSITION 1: (i) A sufficient condition for an economy to satisfy PAM is 
that 0 satisfies generalized increasing differences: whenever p > p', a > a', and 
u e [0, ((p', a, 0)], 4(p, a, jf(a, p', u))> 4 

(p,, 
a', i(a', p', u)). 

(ii) A sufficient condition for an economy to satisfy NAM is that 0 satisfies gen- 
eralized decreasing differences: whenever p > p', a > a', and u e [0, 0 (p', a', 0)], 
S(p, a, 0t(a, p', u)) < (p, a', f(a', p', u)). 

The basic logic of the proof is very simple, particularly when GID holds 
strictly. Suppose that, contrary to PAM, there is an equilibrium with types 
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p > p' and a > a' that are matched negatively, that is, (p', a) and (p, a'). Fea- 
sibility entails that 7r(p') < 0 (p', a, 0), so by strict GID, 

4(p, a, 41r(a, p', 7r(p'))) > 4)(p, a', 0/(a', p', Tr(p'))). 

Stability requires that a' does not want to switch to p' and that a does not want 
to switch to p: 

S(a') = f(a', p, 7T(p)) > (a', p', 7(r(p')), 

&o(a) = 4(a, p', 7r(p')) > i(a, p, 7((p)). 

Applying 4)(p, a',.) to both sides of the first inequality and 4 (p, a,.) to the 
second yields (the inequalities are reversed because the operators are decreas- 
ing) 

r(p)- 
= (p, a', 0f(a', p, 7r(p))) < 0(p, a', i/i(a', p', 7r(p'))), 

0(p, a, 4(a, p', Ir(p'))) < (p, a, 
a 

(a, p, 7r(p))) < r(p); 
thus 0 (p, a, q(a, p', 7r(p'))) < 4)(p, a', i/(a', p', wr(p'))), contradicting strict 
GID. The full proof considers the general case in which GID does not hold 
strictly and consequently where there may exist equilibria that do not satisfy 
PAM; in this case we show that there is a payoff equivalent PAM equilibrium. 
Details are given in the Appendix. 

4.3. The Differentiable Case 

We now present a set of cross partial derivative conditions. For this subsec- 
tion, suppose that P and A are nondegenerate closed intervals. Let 

D = {(p, a, v) e R3 :p FP, a E A, v E (0, 0(a, p, 0))} 

be the "domain of nondegeneracy" of 4b, that is, for each pair (p, a), we ignore 
the corner values 0 and q(a, p, 0). 

We shall also assume that each agent benefits from matching with a higher 
type partner. 

DEFINITION 3: The function 4 is type increasing if for all (p, a) E P x 
A, u, v E R+, 4(p, a, v) is nondecreasing in a and f(a, p, u) is nondecreas- 
ing in p. 

Note that 4 type increasing implies that 4 and fi are nondecreasing in own 
type as well as partner type.7 

7Consider a > a. By definition, for u e [0, b(p, a, 0)], we have u = 4(p, a, f(a, p, u)) = 
((p, ^, 

ai,(a, 
p, u)). Because 4 is nondecreasing in a, 4(p, a, qif(a, p, u)) < (p, a, i(a, p, u)); 

hence, 4(p, a, a(,, p, u)) < (p, , rq(a, p, u)), which implies that f(&, p, u) 
_ 

ifi(a, p, u) be- 
cause 0 is decreasing in payoff. 
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COROLLARY 1: Suppose 0 is type increasing and twice continuously differen- 
tiable on D. 

(i) A sufficient condition for the economy to satisfy PAM is that for all 
(p, a, v) e D, 

(4.3) (P12(p, a, v) > 0 and (P13(p, a, v) > 0. 

(ii) A sufficient condition for the economy to satisfy NAM is that for all 
(p, a, v) e D, 

(4.4) 12(p, a, v) < 0 and 013(p, a, v) < 0. 

The proof exploits the cross partial assumptions and the fact that 0 is type 
increasing to ensure that the marginal value of own type 0 1(P, a, qi(a, p', u)) 
is monotone in a for p E [p', p], and then integrates over j to obtain the GDC 
conditions. See the Appendix. 

Obviously, with TU, 013 = 0, so (4.3) reduces to the standard condition in 
that case. The extra term reflects the fact that changing the type results in a 
change in the slope of the frontier. For PAM, the idea is that higher types can 
transfer utility to their partners more easily (43 is less negative, hence flatter). 

The conditions in Corollary 1 illustrate the separate roles of both the usual 
type-type complementarity and the type-payoff complementarity we have 
mentioned. In terms of the bidding story we mentioned in Section 4.1, if two 
different types are competing for a higher type partner, both will be willing to 
offer her more than they would a partner with a lower type (42 > 0); if the 
higher type's frontier is flatter than the lower type's frontier ()13 > 0), it will 
cost the higher type less to do this than it will the lower one; meanwhile if the 
high type is also more productive on the margin (412 > 0), then he is sure to 
win, in effect being both more productive and having lower costs. 

REMARK 1: The GID condition states that whenever p > p' and u e 
[0, 4)(p', a, 0)], the function 4((p, a, qi(a, p', u)) is nondecreasing in a. Thus 
it is (almost) immediate that if 4 is type increasing and continuously differen- 
tiable on D, a necessary and sufficient condition for GID is 

(4.5) 02(P, a, qr(a, p', u)) + 3(p, a, ,i(a, p', 
u))- i-rl(a, p', u) > 0 

for all types p, p' E P with p > p', all a E A, and utilities u e (0, 4(p', a, 0)) 
(see the Appendix). However, it appears that in practice, this condition would 
be more difficult to verify than (4.3). 

5. APPLICATIONS 

In this section we present two examples that are representative of those 
considered in the literature and use them to illustrate the application of our 
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general results. The first is a marriage market model in which partners vary 
in risk attitude and must share risks within their households. The second is a 
principal-agent model in which agents vary by wealth and principals by project 
risk. 

5.1. Risk Sharing in Households 

Consider a marriage market model in which the primary desideratum in 
choosing a mate is suitability for risk sharing. There are two sides to the mar- 
ket for households, and we denote by p the characteristics of the men and 
by a the characteristics of the women. Household production is random, with 
two possible outcomes w2 > w1 > 0 and associated probabilities q2 and q1. 
Everyone is an expected utility maximizer; income y yields utility U(p, y) to 
a man of type p and utility V(a, y) to a woman of type a. Unmatched agents 
get utility zero. For all p and a, U and Vare twice differentiable, strictly 
increasing, and strictly concave in income, with the marginal utility of in- 
come becoming unbounded as income approaches zero. The characteristics 
p and a are interpreted as the indices of absolute risk tolerance: if p > p', 
then -U22(p, y)/ U2(p, y) < -U22(p', y)/ U2(p', y) for all y, and a > a' im- 
plies -V22(a, y)/V2(a, y) < -V22(a', y)/V2(a', y) for all y. By Pratt's theorem, 
U(p, -) is a strict convexification of U(p', .), and V(a, -) is a strict convexifica- 
tion of V(a', .). 

For informational or enforcement reasons, the only risk-sharing possibili- 
ties in this economy lie within a household that consists of two agents. When 
partners match, their (explicit or implicit) contract {Sili=1,2 specifies how each 
realization of the output will be shared between them: si goes to the woman in 
state i and the remaining wi - s5 goes to the man. 

For a household (p3, a), the maximum expected utility the man can achieve 
if the woman requires expected utility v is given by the value b of the optimal 
risk-sharing problem: 

(5.1) 4(j3, a, v) - 
max wiqiU(p, wi - si) s.t. XiqiV(a, si) > U. 

{sili=1,2 

Call the solution spa for a match (3, a) when a gets v and call the solution siPa' 
for a match (3, a') when a' gets v', where 3 e {p, p'}. These are illustrated in 
Figure 5.1. By the first-order conditions and strict concavity of the utilities, we 
must have 

(5.2) S1 < s2 and w1 - s1 < w2 - S2 

for any optimal sharing rule s. Moreover, it follows from Pratt's theorem, strict 
concavity, and the first-order conditions that 

(5.3) s5a is unique for (3, a); sia spa', p e {p, p'}; 

sp5a # sp', & e {a, a'}. 
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FIGURE 5.1.-Risk sharing. 

We claim that GDD is satisfied (in fact, in its strict form) by this model. We 
verify that 

(5.4) 4(p', a', v') = c(p', a, v) 
= (p, a, v) < (p, a', v'). 

Assume that v and v' are such that 4P(p', a', v') = 4(p', a, v), and suppose 
first that liqiV(a', spa) > YiqiV(a', sp'a') = v'. Then w - spa is in the feasible 
set for the problem that determines w - spa', and by revealed preference and 
(5.3) we have (5.4). 

Thus, assume instead that (as in the figure) 

(5.5) iqiV(a', spa) < I•iqiV(a', spa'). 

By construction, iqijV(a, spa) = .iqiV(a, sp'"); by revealed preference and 

(5.3), ,iqiV(a, spla) > jiqijV(a, 
siPa 

). Therefore, 

(5.6) VijqiV(a, spa) > ZiqiV(a, Spra' 

We show that 
pa p'a' p'a' pa 

(5.7) Spa < 
S1a 

< S(a 
< 

S2 

The middle inequality is from (5.2). Violation of only one of the other inequal- 
ities implies that both a and a' strictly prefer either spa or sp'a', contradicting 
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(5.5) or (5.6). Suppose then that s,~a < sa < s2 < sa (the left and right in- 
equalities are strict to avoid contradiction with (5.5) and (5.6)). Because a' 

prefers sp'a' to spa, the vector of utilities (V(a', 
sIf" 

), V(a', 
s2pl")) 

is a mean 
increasing spread of (V(a', sp"), V(a', 

s2a)). 
Since V(a, -) is a strict convexifi- 

cation of V(a', .), a strictly prefers sp'a' to spa, contradicting (5.6). This estab- 
lishes (5.7). 

Combining (5.2) and (5.7) gives w a - sIa < W - spa p< 
a 

p2 - 'a' 

By construction, XiqiU(p', wi - sp'a') = EiqiU(p', wi - Spa); revealed prefer- 
ence and (5.3) imply that XiqiU(p', wi - sp'a) > XiqiU(p', Wi - SPa). 

Therefore, 
p' prefers w - sP'a' to w - spa, and (U(p', Wl - spIa'), U(p', w2 - Sp'a)) is a 

pa pa mean increasing spread of (U(p', w, - sa ), U(p', w2 - a)). Because U(p,.) is a strict convexification of U(p', .), p strictly prefers w - sp'a' to w - spa, 
or XiqiU(p, wi - 

si'al) 
> iqiU(p, wi - spa) = 4(p, a, v). Finally, by revealed 

preference, 0(p, a', v') > XiqiU(p, wi - 
Spia') 

and, therefore, 0(p, a', v') > 
((p, a, v), proving (5.4). 
Thus strict GDD is satisfied and we conclude that in the risk-sharing economy 

men and women will always match negatively in risk attitude. This is intuitive: a 
risk-neutral agent is willing to offer a better deal for insurance than is a risk- 
averse agent, so those agents who demand the most insurance (the most risk 
averse) share risk with the least risk averse, while the moderately risk averse 
share with each other.8 

In case the frontier 0 admits a closed form solution, verification of the 
GDC is straightforward. For instance, putting U(p, y) = log(1 + p + y) and 
V(a, y) = log(1 + a + y) (type represents initial wealth, which may be shared 
within the partnership; the number of income realizations can be arbitrary), 
one obtains 0 (p, a, v) = log(1 - ev-Xpa) + Xpa, where Vpadenotes Viqi log(wi + 
p + a + 2). Then 

0(p, a, qp(a, p', v)) = log(1 - eXp'la-pa + eV-Xpa) + Xpa 

and 

4(p, a', qP(a', p', v)) = log(1 - eYp'a'-1pa' + ev-spa') + Ipa,. 

Now 

0(p, a, 0(a, p', v)) < b(p, a', 4(a', p', v)) 

if and only if 

(1 - eXp'a-Xpa + ev-xpa )epa < (1 - exp',a-,Pa' 
+ ev-pa' )eXpa', 

8Recently, Chiappori and Reny (2006) extended this argument to show that strict GDD holds 
in the case of an arbitrary number of states. 
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that is, if eXpa - eZp'a < expa' - eXp'a'. This is just the requirement that the func- 
tion eXpa satisfies strict decreasing differences, which it clearly does, given that 
(82/dp da)e pa = -eXpa Var(1/(w + p + a + 2)) < 0. 

For this logarithmic case, the local condition (4.4) does not apply: it is easy 
to check that (l, ,2 

> 0 and 012 < 0, while 013 > 0. However, the model in the 
next subsection does admit application of the local conditions. 

5.2. Matching Principals and Agents 

Principals' projects have a common expected return, but differ in their risk 
characteristics; they must match with agents who differ in initial wealth. Agents 
have declining absolute risk aversion, and the question is whether the safest 
projects are tended by the most or the least risk averse, that is, the poorest or 
wealthiest agents. 

Risk-neutral principals have type indexed by p E [p, 1] and agents have type 
index a E [a, ], where p, a > 0. Agents' unobservable effort e can be either 
1 or 0. The principal's type indexes the success yield and probability of his 
project: it yields R/p with probability p and 0 with probability 1 - p provided 
his agent exerts e = 1; it yields 0 with probability 1 if e = 0. Thus, conditional 
on high effort, all tasks have the same expected return R, but higher p implies 
lower risk. An agent of type a has utility V(a + y) from income y; her type 
represents initial wealth. Utility V(.) is twice differentiable and unbounded 
below, V' > 0 > V", and it displays increasing absolute risk tolerance. 

The frontier for a principal of type p who is matched to an agent of type a is 
given by 

((p, a, v) = maxR - ps1 - (1 - p)so 

s.t. pV(a + sl) + (1 - p)V(a + so) - 1 > V(a + so), 

pV(a + si) + (1 - p)V(a + so) - 1 > v, 

where s, and so are the wages paid in case of success and failure, respectively.9 
The first inequality is the incentive compatibility condition that ensures the 
agent takes high effort. 

Intuition might suggest that because wealthier agents are less risk averse, 
they should be matched to riskier tasks, while the more risk-averse agents 
should accept the safer tasks (i.e., there should be NAM in (p, a)). 

However, this intuition is incomplete, and indeed misleading, as the follow- 
ing application of Corollary 1 shows. By standard arguments, both constraints 

9In this example, the agents' autarchy payoffs are not zero, at least if it assumed that they can 
consume their initial wealth. As we note in Section 7.1, this generalization presents no particular 
difficulty. 
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bind. Let C(.) - V-'(.). Thus V(a + 
sa) 

= 1+ V(a + so) and V(a + so) = v, P 
from which 

4(p, a, v) = R + a - pC(i + 
v 

- (1 - p)C(v). 
(1p 

Thus, 

i(p,a, v) 
=-C' 

-+v -C -+v +C(v), 

02(P, a, v) = 1, 

412 = 0, 

1 i 1 

4)13(P, 
a, 

v)=-C"I+v- 

-C'-+v +C(v). 

The term 01 is positive because C" > 0, so 0 is type increasing. Notice that if 
C' is convex then 413 > 0 and there is PAM in (p, a): as long as risk aversion 
does not decline "too quickly," agents with lower risk aversion (higher wealth) are 
matched to principals with projects that are safer, that is, more likely to succeed. 
This result may appear surprising, because empirically we tend to associate 
(financially) riskier tasks with wealthier workers.10 

The explanation is that in the standard version of the principal-agent model 
with utility additively separable in income and effort, incentive compatibility 
for a given effort level entails that the amount of risk borne by the agent in- 
creases with wealth (dsi/dso > 0 along the incentive compatibility constraint). 
This effect arises from the diminishing marginal utility of income. Although 
wealthier agents tolerate risk better than the poor, they must accept more risk 
on a given task; with C' convex, the latter effect dominates, and the wealthy 
therefore prefer the safer tasks. Put another way, a less risky task allows for a 
reduction in risk borne by the agent; given the increasing risk effect of incen- 
tive compatibility, the benefit of the risk reduction is greater for the rich than 
for the poor, and this generates a complementarity between safety and wealth. 

The result offers a possible explanation for the finding in Ackerberg and 
Botticini (2002) that in medieval Tuscany, wealthy peasants were more likely 
than poor peasants to tend safe crops (cereals) rather than risky ones (vines). 

This example is instructive because the entire effect comes from the non- 
transferability of the problem. There is no direct "productive" interaction be- 
tween principal type and agent type (412 = 0); only the type-payoff comple- 
mentarity plays a role in determining the match. 

10 C' is convex for all utilities of the constant-relative-risk-aversion class V(y) = y1-"/(1 - o-) 
with o- 1/2; see Newman (forthcoming). If C' is concave, then risk aversion declines fast enough 
for the "intuitive" negative matching pattern to arise, although this entails a possibly implausibly 
high level of risk tolerance. 
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6. ORDINALITY, NECESSITY, MODULARITY 

In this section we investigate the strength of the GDC. First, we note that 
GID and GDD are preserved under ordinal transformations of types' prefer- 
ences. This implies that the analyst is free to choose whichever representation 
of preferences is most convenient and leads to a weakening of the differential 
conditions. In a number of cases, the NTU model even admits a TU represen- 
tation, in which case GID and GDD reduce to ID and DD of the joint payoff 
function induced by the representation. After a brief discussion of necessity, we 
turn to a comparison of the GDC with well known lattice theoretic concepts. 

6.1. Ordinality 
The core of an economy, and thus any core matching pattern, is independent 

of the cardinal representation of preferences. However, some representations 
may be easier to work with after monotone transformations of types' utilities; 
in some instances it may be possible to recover a transferable utility represen- 
tation. 

Let F(u; p) be a strictly increasing transformation applied to type-p's util- 
ity u and let F-l(u; p) be its inverse. Similarly, transform type-a's utility by 
G(v; a). Let 

FG (p, a, v) = F(O (p, a, G-'(v; a)); p) 

be the new frontier functions after transformations F and G are applied. 
We call OF,G a representation of 0. Its quasi-inverse is 

fG'F(a,p, 
u)= 

G(I(a, p, F-'(u; p)); a). The following result, proved in the Appendix, shows 
the invariance of the GID condition to ordinal transformations of agents' util- 
ities. 

PROPOSITION 2: Suppose GID holds for 4. Then GID holds for any other 
frontier function generated from 4 by increasing transformations of types' utilities. 
The same result is true for GDD. 

A suitably chosen representation of 0 may be easier to work with than 4 
itself. In particular, although the generalized difference conditions are pre- 
served for all representations of 4, this is not so for the differential conditions 
in Corollary 1. Hence, although the differential conditions may not hold for 
4, they might hold for an alternate representation OF,G. It is enough that one 
representation of 4 satisfies condition (4.3) or (4.4) to guarantee monotone 
matching. 

For instance, in the logarithmic version of risk sharing in Section 5.1, trans- 
form the utility by exponentiation for all types, that is, set F(v; p) = e" and 
G(u; a) = e"; then 4FG(p, a, v) = epa _ v. Unlike 4, which does not satisfy 
the conditions in Corollary 4.3, 4F,G does, because IFG < 0 = F 

G. Notice 
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that the transformation of payoffs actually yields an expression of the frontiers 
in a transferable utility form. 

Starting with a model ) (p, a, v), say that it is TU-representable if there is a 
representation 'F,G of 4 and a function h(p, a) such that 

(6.1) Vp, a, v, F(4(p, a, v); p) = h(p, a) - G(v; a). 

Then F(0)(p, a, v); p) is a TU model, because the transformed payoffs to p 
and to a sum to h(p, a) independently of the distribution of transformed utility 
between p and a. A consequence of Proposition 2 is that 4) satisfies GID if and 
only if h satisfies increasing differences. 

COROLLARY 2: Suppose that 4 has a TU representation )F,G. Then 4 satisfies 
GID (GDD) if and only if h satisfies ID (DD), where h is defined in (6.1). 

A well known example of a model that admits a TU representation is the 
"linear normal exponential" version of the principal-agent model (Holmstr6m 
and Milgrom (1987)) in which a TU representation is found by looking at play- 
ers' certainty equivalent incomes rather than their expected utilities.11 

6.2. Necessity 

It should come as little surprise-and for completeness is established in the 
Appendix-that given a frontier function, if every distribution of types gives 
rise to an economy that satisfies PAM, that frontier function must satisfy GID. 

PROPOSITION 3: If the equilibrium outcome is payoff equivalent to PAM 
(NAM) for every distribution of types, then the frontier function 4) satisfies GID 
(GDD). 

In other words, if GID is not satisfied, there are type distributions for which 
the matching pattern will not be payoff equivalent to PAM.12 If GDD is not 
satisfied either, then matching need not be monotone. In some cases, matching 
will be positive assortative for some type distributions, negative assortative for 
others, and nonmonotone for others still. See Legros and Newman (2002a) for 
examples. 

11See, for instance, Wright (2004) and Serfes (2005) for recent applications to matching. Our 
principal-agent example also has a TU representation if agents' income utility is taken to be 
logarithmic. 

12Notice this necessity result does not say that the GID condition must hold if a particular 
economy has an equilibrium that is (payoff equivalent to) a positively assortative one: the GID 
inequality need only hold for the types in the support of that economy's distribution and for 
the equilibrium payoff levels. Of course, in case 0 has a TU representation, then GID is also 
necessary for PAM in this stronger sense. It is an open question whether the family of frontiers 
such that GID is necessary for PAM is broader than the class of TU-representable models. 
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6.3. Comparison with Lattice Theoretic Conditions 

In TU models, supermodularity of 4?(p, a, v) is equivalent to increasing dif- 
ferences of the production function h(p, a), hence to GID.13 It is natural to ask 
whether there is a relationship between GID and supermodularity for NTU 
models. 

It is evident from Corollary 1 that a sufficient condition for GID is that 4 is 
type increasing and supermodular in (p, a) and in (p, v). The principal inter- 
est of this observation is that it enables us to offer sufficient conditions for 
monotone matching expressed in terms of the fundamentals of the model, 
rather than in terms of the frontiers. Recalling the notation in footnote 5, 
let U(x, p, a) be the utility function of choice variables x for a type-p prin- 
cipal matched to a type-a agent, V(x, a, p) the corresponding agent's utility, 
f2(a, p) their choice set, and A(a, p, v) = {x: V(x, a, p) > v}. 

A simple application of Theorem 2.7.6 of Topkis (1998) tells us that a suffi- 
cient condition for 4 to be type increasing and super-(sub-)modular in (p, a) 
and (p, v), and therefore for GID (GDD), is that U is super-(sub-)modular 
and nondecreasing in (p, a), V is nondecreasing in (a, p), and that the set 

S, = {(p, a, x): x e 2(a, b) n A(a, p, v)} 

is a sublattice for each v and the set 

Sa = {(p, a, x): x E 2(a, b) n A(a, p, v)} 

is a sublattice for each a. 
Practically speaking, verification/satisfaction of the sublattice property may 

be difficult. In the case of logarithmic risk sharing in Section 5.1, Sa is not a 
sublattice because U is submodular while 4P is supermodular in (p, v). The 
monotonicity requirements are also strong: in the principal-agent example in 
Section 5.2, the objective is not increasing in p, although the frontier is. In any 
case, supermodularity is clearly stronger than GID. 

Are there weaker known conditions on frontiers that suffice for assortative 
matching? One such concept is quasi-supermodularity (QSM), which requires 
of a function f defined on a lattice L that, for any x, y E L, 

(6.2) f (x) > f(x A y) =: f(x v y) >f (y), 

where strict inequality on the left-hand side implies strict inequality on the 
right-hand side (Milgrom and Shannon (1994)). Like GID, QSM is a kind of 
single-crossing condition on products of lattices. 

13A function f(x) defined on a lattice L is supermodular when x, y E L implies f(x A y) + 
f(x v y) > f(x) + f(y). Here, L C R", and x A y (x v y) denotes the componentwise minimum 
(maximum) x and y. 
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It is easily verified that QSM in (p, a) and in (p, v) is satisfied for all fron- 
tiers 4 that satisfy (strict) type monotonicity. Because strict type monotonicity 
is not sufficient for GID (in particular, for TU models, monotonicity of the 
output function is well known to be insufficient for PAM; the example in Sec- 
tion 2 is a case in point), QSM in (p, a) and in (p, v) is not sufficient for GID, 
unlike supermodularity in (p, a) and in (p, v). 

Nevertheless, when we assume that 4(p, a, v) is nondecreasing in a, QSM 
of 4) in (p, a, v) implies GID. The two concepts do not coincide, however, as 
we show in two examples in the Appendix: Example 1 shows that there exist 
frontiers that are type increasing for which GID holds, but QSM does not; 
Example 2 shows that when 4 is decreasing in a, there are frontiers that satisfy 
QSM, but neither GID nor GDD. 

PROPOSITION 4: Consider the set of maps 4: P x A x R+ -+ R+, which are 
strictly decreasing in the third argument. If 4 is nondecreasing in its second argu- 
ment, then QSM of 4 implies GID. 

7. EXTENSIONS 

7.1. Type-Dependent Autarchy Payoffs and Uneven Sides 

Suppose that autarchy generates a payoff u(p) to type p and payoff v(a) to 
type a. If u(.) and v(.) are continuous, we can assume without loss of general- 
ity that u(.) > 0 and v(.) > 0. Then all the propositions go through as before, 
because if the generalized difference or differential conditions hold for non- 
negative payoffs, they hold on the restricted domain of individually rational 
ones. Equilibrium will now typically entail that some types remain unmatched, 
but among those matched, the pattern will be monotone if the appropriate dif- 
ference condition holds. 

By the same token, little changes if the cardinality of the two sides differs. 
Some agents on the long side will be left out of the match, but the GID condi- 
tion implies that those who are matched will be positively assorted: our main 
result implies that those who are matched initially can be rearranged if neces- 
sary in a positive assortative fashion while receiving the same payoffs. The un- 
matched agents, who previously were unable to underbid any matched agent, 
will still be unable to do so. 

7.2. One-Sided Models 

One-sided models, in which the type space is just A, introduce two compli- 
cations. First they admit a richer variety of monotone matching patterns than 
two-sided models.14 Second, as is well known, they may have existence prob- 
lems, at least in finite economies. Nevertheless, the apparatus developed here 

14In the one-sided model, matching satisfies PAM (NAM) if for any two matched pairs (a, a') 
and (a, a'), max{a, a'} > max{a, a'} ) min{a, a'} > (<) min{a,, a'). 

This content downloaded from 128.135.12.127 on Mon, 20 Jul 2015 18:06:35 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ASSORTATIVE MATCHING WITH NONTRANSFERABILITIES 1093 

can be adapted straightforwardly to the one-sided case to characterize equilib- 
ria when they exist. 

Now GID takes the form 4 (a', a, 0 (a, a", v)), increasing in a for all v < 
4(a", a, 0) and a' > a" (note that Iq(a, a', v) = 4(a, a', v)). If GID holds, we 
obtain a special form of PAM: segregation, wherein matched pairs consist of 
identical agents (obviously, this requires an even number of agents of each 
type). The proof mimics that of Proposition 1 in showing that any heteroge- 
neous match is unstable if GID holds. Sufficiency of GDD for NAM is shown 
similarly; we refer the reader to our working paper (Legros and Newman 
(2002b)). 

7.3. Strict NTU 

Our model excludes the extreme case in which the Pareto frontier for a 
matched pair is a point, as in the literature surveyed in Roth and Sotomayor 
(1990). Becker (1973) showed that strict monotonicity of the payoffs in type is 
sufficient for assortative matching in this case. It turns out that although the 
strict NTU model can be obtained as a limit case of ours, there are discon- 
tinuities in the limit. For instance, GID can be satisfied by an economy with 
strict NTU but not by nearby economies with strictly decreasing frontiers. GID 
still implies the existence of a PAM equilibrium, but there may also be other 
equilibria that are not payoff equivalent to a PAM equilibrium. However, if 
agents are never indifferent between partners, GID is sufficient for an econ- 
omy to satisfy PAM, which weakens Becker's condition. See Legros and New- 
man (2006a), who also showed that GID is a strengthening of Clark's (2006) 
and Eeckhout's (2000) conditions for uniqueness of equilibrium. 

7.4. Continuum Economies 

Because the GDC conditions are distribution-free, our restriction to a finite 
number of agents is without much loss of generality. When the GID condition 
is strict, then even in economies with a continuum of agents and/or types, there 
can never be a negative stable match and PAM is the only equilibrium outcome. 
When the GID condition holds weakly, then whenever an equilibrium exists, it 
is possible to construct an equilibrium that is positive assortative. However, to 
establish the stronger analog of Proposition 1, that is, that any equilibrium is 
payoff equivalent to an equilibrium that satisfies PAM, the algorithm used in 
the proof of Proposition 1 for finite economies is not applicable and has to be 
replaced by a limit argument. See Legros and Newman (2006b). 

8. CONCLUSION 

Many economic situations involving nontransferable utility are naturally 
modeled as matching or assignment games. We have presented some general 
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sufficient conditions for monotone matching in these models. These conditions 
have an intuitive basis and appear to be reasonably straightforward to apply. 
Specifically, if one wants to ensure PAM, it does not suffice to have only com- 
plementarity in types; one must ensure as well that there is enough type-payoff 
complementarity. 

Implicitly motivating this paper's focus on properties of the economic envi- 
ronment that lead to monotone matching is the question of how changes in that 
environment affect matching patterns. Space, not to mention the present state 
of knowledge, is too limited to offer a complete answer to this question here, 
but being able to go beyond the TU case is a necessary part of the puzzle. Many 
phenomena that could be characterized as mass reassignments of partners can 
be understood as manifestations of changes to the degree of transferability. 

For instance, mergers and divestitures involve reassignments of, say, up- 
stream and downstream divisions of firms. Transferability between divisions 
depends in part on the efficiency of financial markets: the magnitude of the ef- 
fect is dependent on characteristics of individual firms such as liquidity position 
or productivity. Deregulations or innovations in financial markets typically will 
alter transferability and may lead to widespread reassignment of partnerships 
between upstream and downstream divisions, that is, "waves" of corporate re- 
organization (Holmstr6m and Kaplan (2001)). 

Another example is a policy like Title IX, which requires U.S. schools 
and universities that receive federal funding to spend equally on men's and 
women's activities (athletic programs having garnered the most public atten- 
tion) or suffer penalties in the form of lost funding. If one models a college as 
a partnership between a male and a female student-athlete, identifying their 
types with the revenue-generating capacities of their respective sports, the pol- 
icy acts to transform a TU model into an NTU model, rather like the example 
in Section 2. Imposing Title IX would lead to a reshuffling of the types of males 
and females who match: the male wrestler (low revenue), formerly matched 
to the female point guard (high revenue), will now match with, say, a female 
rower, while the point guard now plays at a football school. There is evidence 
that this sort of reassignment has taken place: the oft-noted terminations and 
contractions of some sports at some colleges are ameliorated by start-ups and 
expansions at others. 
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APPENDIX 

A.1. Proof of Proposition 1 

We prove part (i); the proof of (ii) is similar. The proof has two steps. We 
first establish that when GID holds, any equilibrium that matches four types 
in a NAM fashion has the property that we can rematch these types in a PAM 
fashion without violating feasibility. We then show that if an equilibrium does 
not satisfy PAM, we can use recursively the previous result to construct a type- 
payoff equivalent equilibrium that satisfies PAM. 

LEMMA 1: Suppose that GID holds. Consider an equilibrium and associ- 
ated stable (91T, r, w). If a' E 9)1(p) and a E 9Rn(p'), where a > a' and p > p', 
then 7r(p) = 4)(p, a, to(a)), to(a) < 41(a, p, 0) and 7r(p') = 4(p', a', w (a')), 
o (a') 

<_ 
4(a', p',0). 

PROOF: Consider a NAM matching as in the lemma with payoffs 7r and o. 
Feasibility entails 

(A.1) wr(p) = 0(p, a', wt(a')) and o (a') < i(a', p, 0), 

(A.2) rr(p') = O(p', a, w(a)) and co(a) < qi(a, p', 0). 

Stability of the NAM matching requires 

(A.3) & (a') > 1(a', p', 7((p')), 

(A.4) 7r(p) > (p, a, w(a)). 

From (A.4) and (A.2), 

(A.5) Tr(p) > b(p, a, wco(a)) = k(p, a, i41(a, p', gr(p'))). 

From (A.2), vr(p') < 4(p', a, 0) and by GID, 

(A.6) 0(p, a, q(a, p', 7T(p'))) > 0(p, a', qf(a', p', 7r(p'))). 

From (A.3) and (A.1), 

(A.7) 0(p, a', qj(a', p', Tr(p'))) > ~ (p, a', w (a')) = 
-r(p). 

Hence, from (A.5)-(A.7), we must have an equality everywhere or 

(A.8) ir(p) = 4(p, a, w(a)) = 4(p, a', fr(a', p', 7r(p'))) 
= c(p, a', w(a'))= T(p). 
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Case 1: r((p) > 0. In (A.8), IT(p) = 0(p, a, wo(a)) 
shows that (IT(p), w(a)) 

is feasible for (p, a). Because k(p, a', qi(a', p', ir(p'))) > 0, it follows that 
q(a', p', w7(p'))= =o(a') < qi(p, a', 0) and, therefore, (7r(p'), w (a')) is feasi- 
ble for (p', a'). 

Case 2: Ir(p) = 0. Then to (a') = #q(a', p, 0) > 0 and, by stability, wo(a) > 
qJ(a, p, 0). We show that we cannot have wt(a) > q(a, p, 0). If we do, 
define uo = =4(p', a, q(a, p, 0)). Then 4(p', a, 0) > uo > 4(p', a, wo(a)) = 

Tr(p'). By construction, 4(p, a, ip(a, p', uo)) = 0. If uo < 0 (p', a', 0), then 
q(a', p', uo) < q0(a', p', 7T(p')) < w(a') by (A.3); if uo > (p', a', 0), then 
qj(a', p', u0) = 0 < 

wo(a'). 
Thus 4(p, a', qf(a', p', uo)) > (P(p, a', w(a')) = 

7T(p) = 0 = '(p, a, qf (a, p', uo)) and we have a contradiction to GID. There- 
fore, w (a) = tfi(a, p, 0) and (0, wo(a)) is feasible for (p, a). From (A.8), 
4(p, a', #q(a', p', wr(p'))) = 0, so qfi(a', p', rT(p')) > t/i(a', p, 0) = o (a'). How- 
ever, by stability (A.3) we must have an equality: qf(a', p', 7r(p')) = wc(a'), that 
is, (wr(p'), w(a')) is feasible for (p', a'). 

Q.E.D. 
We have shown that under GID, if in equilibrium there are two matches 

that violate PAM, it is possible to reassign partners to obtain PAM without 
modifying payoffs and, therefore, without violating stability. This falls short, 
however, of showing that starting from an equilibrium in which 9A2 does not 
satisfy PAM, we can find a payoff equivalent equilibrium that does satisfy PAM. 

The next part of the proof shows an algorithm to construct a new equilib- 
rium (W9t', rT, w), where 9R1' satisfies PAM, and rT and w are the initial equilib- 
rium type payoffs. It is easier to develop the argument in reference to agents 
rather than types. Let N be the cardinalities of I and J. Then we can write 
I = {ik, k e {1, 2, ..., N}} and J = {jk, k E {1, 2, ..., N}}. Higher indexes cor- 
respond to lower values of the characteristic, that is, agent ik has type p and 
agent it has type p', where p > p' if and only if k < 1. 

We show that under GID, any equilibrium (m, r*, o*) is payoff equivalent 
to the equilibrium (m*, rT*, w*) with m*(ikj) = 

k. 
Suppose that in (m, 7r*, w*), m(ikn) = j, I = k. Let ko be the first time this 

situation arises. Hence for all t< ko - 1, m(it) = m*(it) = j,. Let i, be such 
that m(i,) = jk0; by construction if iko has type p and jk0 has type a, ji has 
type a' < a and i, has type p' < p. By the lemma, we can match iko with jko 
and i, with jh, and keep the same payoffs for the four agents without violating 
feasibility or stability. Doing so we have a new matching mi1l: 

m*(it), 
if t < 

ko, 
m[1(it) = m(it), if t > ko + 1, t 

- 
r, 

ji, if t= r. 

If mil] = m*, we are done. Otherwise, let k1 be the first index such that 
mil](it) Z j,; by construction of mil], it must be the case that kl > ko + 1. Re- 
peat the previous construction to obtain a new matching function m[2] with 
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m[2](t) 
= m*(t) for t < k1. Repeating this construction, we will have a value n 

such that m[,] = m*. Stability of m* with respect to (IT*, w*) is inherited from 
the stability of m with respect to (Tr*, m*). Hence (m*, 7r*, w*) is an equilibrium 
that satisfies PAM, concluding the proof. 

A.2. Proof of Corollary 1 

Consider a > a', p > p', and u < 4 (p', a, 0). By type monotonicity, 0 (p', a, 
0) (4)(p', a', 0). 

If u E [4)(p', a', 0), 4)(p', a, 0)], then 4 (p, a, 41r(a, p', u)) = 4)(p, a, 0), 
which is greater than 04(p, a', 0) by type monotonicity. Hence, 04(p, a, ifi(a, p', 
u)) > 0(p, a', ip(a', p', u)). 

If u e (0, (p', a', 0)), because 4) is type monotonic, when a > a' and 
P > p', then 4(p', a', 0) < 4)(pb, a, 0); therefore, u < 4(p^, &, 0). Letting v = 
qf(a', p', u), then (p3, a, v) E D and 412(K, p , v) is well defined for all a > a' 
and 

>_ 
p'. Therefore, 

(A.9) 0 < 412(P, , v) d 

= 0i1(p, a, v) - _01(i, a', v). 

Given that 013 > 0, we have for all 
__> 

p', 01i(k, a, qf(a, p', u)) 
>_ 

41(j3, a, 
q(a', p', u)), which together with (A.9) leads to 

(A.10) 1(J, a, (a, 
p', u))> 4 1( J, a', q(a', 

p', u)). 

Integrating both sides with respect to k on the interval [p', p] leads to 

4)(p, a, ji(a, p', u)) - (p', a, ql(a, p', u)) 

> 4)(p, a', q(a', p', u)) - 4)(p', a', #q(a', p', u)). 

Because 0 (p', a, q(a, p', u)) and 4)(p', a', q(a', p', u)) are both equal to u, 
we obtain the GID condition. 

If u = 0, consider a sequence {Uk} c (0, 0(p', a', 0)) that converges to 0. For 
each k, we have by the previous case 4 (p, a, q f(a, p', uk)) > _0(p, a', if(a', p', 
uk)); 

because (P and f are continuous, taking the limit on both sides with re- 
spect to k yields 4)(p, a, #q(a, p', 0)) > ~ (p, a', if(a', p', 0)). 

A.3. Proof of Claim in Remark 1 

Suppose GID and let u e (0, 4)(p', a, 0)). Because (p', a, 4(a, p', u)) e D, 
type monotonicity implies that for all p > p', (p, a, f(a, p', u)) e D. If GID 
holds, 4(p, a, if(a, p', u)) is nondecreasing in a for p > p'; because this 
function is differentiable in a, we must have 0 

_< a4)(p, 
a, q(a, p', u)) = 

This content downloaded from 128.135.12.127 on Mon, 20 Jul 2015 18:06:35 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1098 P. LEGROS AND A. F NEWMAN 

02(P, a, (a, p', u)) + 03(P, a, 4r(a, p', u))- 1l(a, p', u). This proves neces- 
sity. 

For sufficiency, consider a' < a, p' < p, and u 
_< (p', a, 0). If u e [ 4(p', a', 

0), (p', a, 0)], GID holds because 4)(p, a, qt(a, p', u)) = (0(p, a, 0). If u e 
(0, (p', a', 0)), because 4 is type increasing, for all a > a, 0(a, p', u) < 
i(i, p, u); therefore, (p, a, fi(a", p', u)) E D, which shows that 04(p, a, If,(a, 
p', u)) is differentiable with respect to a. Hence, integrating (4.5) on [a', a] 
leads to the GID condition. If u = 0, use a limit argument as in the previous 
proof. 

A.4. Proof of Proposition 2 

We consider the case for GID; the proof for GDD is similar. It is enough to 
show that the map OFGG(p, a, v) satisfies GID, that is, that 

(pF'G(p, 
a, FqjGF(a, 

p', u)) is increasing in a: 

0F,G(p, a, 9G'F(a, p, u)) 
= F(O(p, a, G-1(CGF (a, p', u); a); p)) 

= F( 4(p, a, G-1(G(qf(a, p', F-(u; p')); a); a); p)) 

= F(O(p, a, q'(a, p', F-(u; p')); p)). 

Because F(.; p) is strictly increasing, 0 F,G(p, a, iG'F(a, p', U)) is increasing in 
a only if (k(p, a, qj(a, p', F-'(u; p'))) is increasing in a, which is true because 
0 satisfies GID. 

A.5. Proof of Proposition 3 

Consider PAM; the case for the necessity of GDD for NAM is similar. Sup- 
pose there are p, p' e P, p > p' and a, a' E A, a > a', and a payoff level 
u < 4 (p', a, 0) such that ( (p, a, iqj(a, p', u)) < 04(p, a', 41(a', p', u)). Then we 
can find a distribution of types such that there is an equilibrium that is not pay- 
off equivalent to PAM. 

To see this, put an equal number of agents at each of the four types p, p', a, 
and a'. Then there is e > 0 such that (p', a) with payoffs (u, ifi(a, p', u)) and 
(p, a') with payoffs (04(p, a', iq(a', p', u) + e), q(a', p', u) + e) is an equi- 
librium. To verify stability, note that by continuity of 4 in v, for e small 
enough, 04(p, a, 0f(a, p', u)) < 0(p, a', 0f(a', p', u) + e). Thus p would be 
strictly worse off switching to a as long as a receives at least his equilibrium 
payoff. Similarly a' would lose e by switching to p'. Finally, the match is not 
payoff equivalent to PAM because p cannot generate i .(p, a', 4 I(a', p', u) + e) 
in a match with a without offering a less than i(a, p', u). In addition, no match 
with PAM could support these payoffs, because the same inequality implies 
that p cannot generate his equilibrium payoff in a match with a. 
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A.6. Proof of Proposition 4 

Let p > p' and a > a'. We establish GID, that is, 

(A.11) 4(p', a', V')= 4(p', a, v) =- 0(p, a, v) > 0(p, a', v'). 

Suppose 4 (p', a', v') = ( p', a, v). Because 4 is nondecreasing in its second 
argument and decreasing in its third, we have v > v'. Put x = (p', a, v) and 
y = (p, a', v'). Then xA y = (p', a', v') and xv y = (p, a, v). We therefore 
have 4)(x) = 4)(x A y), and by QSM, 40(x v y) > 0 (y), that is, 0 (p, a, v) > 
0 (p, a', v'), as desired. 

A.7. QSM and the GDC 

EXAMPLE 1: The example shows that within the set of type-increasing fron- 
tiers, QSM is a stronger concept than GID. The construction resembles that 
in Section 2: starting from a pair of payoffs f(pla) to p and g(alp) to a that 
serves as a "reference point" for a match (p, a), construct a frontier 4 (p, a, v) 
by allowing transfers at a rate 3 away from the reference payoff. Consider 
p > p' and a > a', and the reference points for the four possible matches, 

f (pla') = g(a'lp) = t, 

f (p'la') = g(a'lp') = s, 

f(p'la) = r, g(alp') s, 

f(pla) = g(alp)= t, 

where s < t < r. We assume that p = 1 in the match (p, a); hence, 0)(p, a, v) = 
max{0, 2t - v} and that p is "small" for the other matches. In particular, we 
assume that t > (1 + P)s, r E (t, 2t - s], and p < (t - s)/(t + r). Note that 4 is 
increasing in its first two arguments. See Figure A.1. 

We show that QSM is violated. Letting x = (p, a', t) and y = (p', a, s), we 
have x A y = (p', a', s) and x vy = (p, a, t). Then 0)(x) = t > s = 4(xA y) and 
QSM would require that 4 (x v y) > 4 (y). However, 4 (y) = r and 0 (x v y) = 
t, and because r > t, we have a violation of QSM. 
We now verify GID. For u e [0, 0(p', a, 0)], where 0(p', a, 0) = r + ps, ob- 
serve that 

4)(p, a, qi(a, p', u)) > 40(p, a, qJ(a, p', 0)) = 2t - (s + pr). 

On the other hand, 4 (p, a', qi(a', p', u)) < t(1 + /3). Therefore, GID holds if 

t(1 + P) < 2t - (s + pr), 

which is satisfied because P < (t - s)/(t + r). This proves that the set of fron- 
tiers that are monotonic in types and that satisfy QSM is a strict subset of those 
that satisfy GID. 

This content downloaded from 128.135.12.127 on Mon, 20 Jul 2015 18:06:35 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1100 P. LEGROS AND A. E NEWMAN 

w(a) 

2t 

t ~xVy 

xAy 

O bx) y qOxV 2t 

w(a') 

FIGURE A.1.-GID holds but OSM is violated. 

EXAMPLE 2: The example illustrates the role of the type-increasing condi- 
tion in establishing Proposition 4: without it, QSM no longer implies GID. 

Let p > p', a > a', and, where they are positive, 4(p, a, v)= s - v, 
O(p', a, v) = t - v, 4(p', a', v) = r - v, and 0b(p, a', v) = s - (s/r)v, where 
0 < s < t < r. Clearly, 0 is not type increasing. Moreover, for u e [0, r], 
4(p, a, i(a, p', u)) = max{0, s - max(0, t - u)} and 4)(p, a', qi(a', p', u)) = 

us/r, so that for u in a neighborhood of t - s, 4 fails to satisfy GID, while in a 
neighborhood of t, 4 does not satisfy GDD. 

We now show that nevertheless, 4 is QSM. Because f is nonincreasing in all 
three arguments, for any choice of x and y, we cannot have 4 (x) > 4~(x A y), 
so it is enough to verify that 4(x) = 4(x A y) = 4(x v y)> 0 (y). Note that 
the QSM inequality holds if P (y) = 0. In all cases below we set y = (jp, a, w). 

Case 1: x= (p',a', v). If v < w, then xA y = x and xv y = y, and the QSM 
inequality is satisfied trivially. If v > w, then 0 (x) = 40(x A y) ' max{0, r - 
v} = max{0, r - w}, which can happen only if w > r. Then 0(y) = 0 and the 
QSM inequality is satisfied. 
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Case 2: x = (p, a, v). Then 4)(x A y) = 0 (p3, a, min(v, w)). If v < s, then 
P (x) = s - v and 0 (x) = 4 (x A y) only if y = x, and the QSM inequality holds. 
If v > s, then 04(x) = 0 and we need 4(x A y) = 0 or min(v, w) > 41(a, p, 0); 
in this case, 0 (y) = 0 and the QSM inequality is satisfied. 

Case 3: x = (p', a, v). Then 0 (x A y) = 4)(p', a, min(v, w)). If v < t, then 
O(x) = t - v and O(x) = 4)(x A y) only if a = a and v = min(v, w). Then 
y = x v y = 

(/p, a, w) and the QSM inequality holds. If v > t, then (P(x) = 
0 and we need ( (p', a, min(v, w)) = 0 or min(v, w) > i (a, p', 0). Because 
q is decreasing in types, if(a-, p , 0) < (ai, p', 0) and, therefore, min(v, w) > 
q(a, p, 0), proving that ~ (y) = 0 and the QSM inequality holds. 

Case 4: x = (p, a', v). This is similar to Case 3. 
Thus QSM is satisfied while neither of the GDC hold: when 0 is not type 
increasing, QSM has little relationship to the GDC. 
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