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 Workers' Education, Spillovers, and Productivity:
 Evidence from Plant-Level Production Functions

 By ENRICO MORETTI*

 I assess the magnitude of human capital spillovers by estimating production func-
 tions using a unique firm-worker matched data set. Productivity of plants in cities
 that experience large increases in the share of college graduates rises more than the
 productivity of similar plants in cities that experience small increases in the share
 of college graduates. These productivity gains are offset by increased labor costs.
 Using three alternative measures of economic distance-input-output flows, tech-
 nological specialization, and patent citations-I find that within a city, spillovers
 between industries that are economically close are larger than spillovers between
 industries that are economically distant. (JEL J30, L60, 040)

 Human capital externalities may arise if the
 presence of educated workers makes other
 workers more productive. Alfred Marshall
 (1890) is among the first to recognize that social
 interactions among workers create learning op-
 portunities that enhance productivity. A grow-
 ing theoretical literature has since then built on
 this idea and proposed models where human
 capital externalities are the main engine of eco-
 nomic growth. In an influential paper, Robert E.
 Lucas, Jr. (1988) argues that human capital ex-
 ternalities in the form of learning spillovers may

 * Department of Economics, Bunche Hall, University of
 California-Los Angeles, Los Angeles, CA 90095 and Na-
 tional Bureau of Economic Research (e-mail:

 moretti@econ.ucla.edu). I am indebted to Dan Ackerberg,
 Sandy Black, Lee Branstetter, Janet Currie, Robert Dekle,
 Paul Devereux, Bronwyn Hall, Chang-Tai Hsieh, Joe Hotz,
 Daniel Johnson, Phillip Leslie, David Levine, Darren
 Lubotsky, Marco Manacorda, Charles Mullin, Giovanni
 Peri, Brian Silverman, two anonymous referees, a co-editor,
 and seminar participants at Berkeley, Rochester, and Uni-
 versity of Southern California for useful comments on this
 and previous drafts. The research in this paper was con-
 ducted while the author was a Census Bureau research
 associate at the California Census Research Data Center.

 Research results and conclusions expressed are those of the
 author and do not necessarily indicate concurrence by the
 Bureau of Census. This paper has been screened to insure
 that no confidential data is revealed. A previous version of
 this paper circulated under the title: "Human Capital Spill-
 overs in Manufacturing: Evidence from Plant-Level Produc-
 tion Functions," CLE Working Paper No. 21, November
 1999.
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 be large enough to explain long-run income
 differences between rich and poor countries.

 Empirical evidence indicates that spillovers
 may be important in some high-tech industries.l
 Yet, despite significant policy implications,
 there is little systematic empirical evidence on
 the magnitude of human capital spillovers. Only
 recently have some authors attempted to esti-
 mate the size of spillovers from education by
 comparing the wages of otherwise similar indi-
 viduals who work in cities or states with differ-

 ent average levels of education (James E.
 Rauch, 1993; Daron Acemoglu and Joshua An-
 grist, 2000; Antonio Ciccone and Giovanni
 Peri, 2002; Moretti, 2004).

 In this paper, I take a more direct approach to
 the estimation of human capital externalities
 and focus on the productivity of manufacturing
 plants. The idea is quite simple. If externalities
 exist, we should see that plants located in cities
 with high levels of human capital can produce a
 greater output with the same inputs than other-
 wise similar plants located in cities with low
 levels of human capital. To test this hypothesis,
 I estimate plant-level production functions us-

 1 For example, patient citations are more likely to come
 from the same state or metropolitan area as the originating
 patent; see Adam Jaffe et al. (1993). The entry decisions of
 new biotechnology firms in a city depends on the stock of
 human capital of outstanding scientists there, as measured
 by the number of relevant academic publications (Lynne G.
 Zucker et al., 1998).
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 ing a unique firm-worker matched data set,
 obtained by combining the Census of Manufac-
 turers with the Census of Population.

 For each plant and city, I define the overall
 level of human capital in the city by calculat-
 ing the fraction of college-educated workers
 among all workers in the city outside the
 plant. After controlling for a plant's own hu-
 man capital, I find that the productivity of
 plants located in cities that experience in-
 creases in the overall level of human capital
 rises more than the productivity of otherwise
 similar plants located in cities where the over-
 all level of human capital is constant. The key
 econometric issue in comparing the produc-
 tivity of plants across metropolitan areas with
 different overall levels of human capital is the
 possible presence of unobserved factors that
 raise productivity and attract a more skilled
 labor force to a city. It is possible that more
 productive plants are located in cities with a
 better-educated labor force for reasons inde-

 pendent of human capital spillovers.
 A benefit of using longitudinal, plant-level

 data is that I can deal with some of the most

 relevant endogeneity and selectivity issues. By
 looking at changes over time, I control for per-
 manent unobserved characteristics of plants and
 cities that might bias a simpler cross-sectional
 specification. It is still possible that time-
 varying productivity shocks are correlated with
 changes in the overall level of human capital in
 an area. For example, if southern states that
 have low levels of productivity at the beginning
 of the period catch up, and this modernization
 process in turn attracts a better-educated labor
 force to the South, then the estimated spillover
 will be too large. To lessen any fear that overall
 college share is correlated with time-varying
 unobserved factors, I control for state x indus-
 try X year effects. Identification comes by com-
 paring changes over time in the productivity of
 plants that are in the same state and industry,
 but in different cities.

 According to the most robust estimates, a
 1-percent increase in the city share of col-
 lege graduates is associated with a 0.5-
 0.6-percentage-point increase in output. This
 estimate is remarkably robust across specifica-
 tions. Different assumptions on technology,
 omitted variables, and variable definitions all
 yield similar results. Even after controlling for

 plant fixed effects, industry-specific transitory
 shocks, and state-specific transitory shocks, it is
 still possible that part of the correlation between
 plants' productivity and aggregate human capi-
 tal reflects changes in time-varying unobserved
 characteristics of cities. I cannot completely
 rule out this possibility, but I do provide several
 additional pieces of evidence to further investi-
 gate the validity of my conclusions.

 I test whether the documented spillovers be-
 tween two industries that are located in the same

 city and are economically close are larger than
 the spillovers between two industries that are
 located in the same city and are economically
 distant. Consistent with the view that measured

 spillovers represent the transmission of knowl-
 edge across related sectors, I find that spillovers
 generally decline with economic distance. For
 example, I find that aggregate human capital in
 the high-tech sector of the city matters more for
 high-tech plants than aggregate human capital
 in the low-tech sector of the city; and aggregate
 human capital in the low-tech sector matters
 more for low-tech plants than aggregate human
 capital in high-tech plants.2

 I probe the relationship between economic
 distance and spillovers using three direct mea-
 sures of economic distance. First, I use input-
 output tables and assume that the economic
 distance between manufacturing and other in-
 dustries is proportional to the value of inputs
 that each industry provides to manufacturing.
 Second, I use an index of technological distance-
 first proposed by Jaffe (1986)-based on the
 distribution of patents across technological
 fields. According to this metric, two industries
 are close if the distribution of patents across
 technologies is similar. Third, I use a metric
 based on linkages revealed by patents citations
 (Jaffe et al., 1993). According to this metric, an
 industry is close to manufacturing if manufac-
 turing patents frequently cite that industry's pat-
 ents. Using these three metrics, I find that the
 magnitude of the estimated spillover tends to
 decline with economic distance, although this
 relationship is by no means monotonic.

 I provide several other specification tests of

 2 Similarly, human capital in the same 2-digit industry
 has a larger effect than human capital in the entire manu-
 facturing sector.
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 the estimated spillover effects. Most impor-
 tantly, I test whether the stock of physical cap-
 ital in a city outside a plant is associated with
 increased productivity in the plant. If my esti-
 mate of human capital spillovers are spurious,
 or attributable to agglomeration effects rather
 than human capital externalities, then I may find
 a similar "spillover" from physical capital. The
 results show no evidence of such physical cap-
 ital spillover.

 I also use an instrumental variable ap-
 proach based on the fraction of large plant
 openings among all the plant openings in a
 city excluding the relevant 3-digit industry as
 an instrument for college share in other in-
 dustries. Openings of large new plants are an
 important determinant of changes in the ag-
 gregate education level of manufacturing
 workers, explaining 11-18 percent of the
 changes in the fraction of college-educated
 workers. Instrumental variable estimates are gen-
 erally consistent with ordinary least-squares
 (OLS) estimates, although less precise.

 In the last section of the paper, I assess the
 plausibility of the estimated spillover effect by
 comparing it to the difference in labor costs
 between cities with high and low levels of hu-
 man capital. In equilibrium, if firms are really
 more productive in cities with high levels of
 human capital, we should observe proportion-
 ally higher wages in those cities. Otherwise,
 firms would relocate from cities with low hu-

 man capital to cities with high human capital. I
 find that the estimated productivity differences
 generated by human capital spillovers are
 roughly offset by increased labor costs.

 Overall, I cannot reject the existence of hu-
 man capital spillovers in U.S. manufacturing.
 However, because the stock of human capital
 grows slowly over time, the contribution of
 human capital spillovers to economic growth is
 not large. The most robust estimates in this
 paper indicate that human capital spillovers are
 responsible for an average of 0.1-percent in-
 crease in output per year during the 1980's.

 The paper is organized as follows. In Section
 I, I present a simple general-equilibrium frame-
 work with spillovers. In Section II, I describe
 the econometric specification adopted and I dis-
 cuss the potential sources of bias. In Section III,
 I describe the data. Sections IV, V, and VI
 present the empirical results. In Section VII, I

 compare the estimated spillover effects with
 wage differences across cities. Section VIII
 concludes.

 I. Equilibrium with Spillovers

 In this section I present a simple general-
 equilibrium framework to illustrate the nature
 of a spatial equilibrium in the presence of hu-
 man capital spillovers. The model is adapted
 from a well-known model by Jennifer Roback
 (1982, 1988). The intuition is simple. Firms are
 more productive in cities with high overall lev-
 els of human capital, because of spillovers. In
 equilibrium, firms are indifferent between cities
 because wages are higher in cities with a higher
 overall level of human capital, so that unit
 costs are the same everywhere. Workers are
 indifferent because housing prices are higher in
 cities with a higher overall level of human cap-
 ital. The model indicates that there are two ways
 to empirically measure human capital external-
 ities: by comparing the output of firms located
 in cities with high and low levels of human
 capital; and by comparing the wages of workers
 located in cities with high and low levels of
 human capital. In this paper, I take the former
 approach. In Section VII, I show that the esti-
 mated productivity differences between cities
 with high and low levels of human capital are
 consistent with observed wage differences be-
 tween cities with high and low levels of human
 capital.

 Consider two cities and two types of labor,
 educated and uneducated workers. There are

 two types of goods, a composite good y-
 nationally traded-and land h-locally traded.
 Each city is a competitive economy that pro-
 duces y using a Cobb-Douglas technology: y =
 AH"HL"LKO, where H and L are the hours
 worked by skilled and unskilled workers, re-
 spectively, and K is capital. To introduce the
 possibility of human capital spillovers in the
 model, I allow the productivity of plants in a city
 to depend on the aggregate level of human
 capital in the city: A f(S). In the empirical part
 of the paper, for each firm and city, I measure S
 using the fraction of college-educated workers
 in the city, outside the firm. In the absence
 of human capital spillovers from education,

 . In this case, productivity of a firm

 S - 0. In this case, productivity of a firm 5S
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 Rent-p

 C(w ,wz p, S) =

 wage w* wage w.
 in A in B

 HIGH FOICATnON

 wage w'> wage
 in A in B

 LOW EDUCATION

 FIGURE 1. EQUILIBRIUM WAGES AND RENT IN TWO CITIES

 Notes: Point 1 is the equilibrium in city A. Point 2 is the equilibrium in city B without externality. Point 3 is the equilibrium
 in city B with externality. The dashed lines in both panels are the isocost curves in city B without externality. wH and WL are
 the nominal wages of educated and uneducated workers, respectively.

 increases if more skilled workers are employed in
 the firm, but holding constant the firm's labor
 force, increases in the share of educated workers
 in the city have no effect on productivity. On the
 other hand, if the college share in a city generates
 positive human capital spillovers, a rise in college
 share raises productivity of all plants in the city:
 f
 5 > 0. Different mechanisms for human capital

 exteralities have been proposed in the theoretical
 literature, and the model proposed here is consis-
 tent with most of these.3

 3 Marshall (1890) is often quoted as arguing that social
 interactions among workers in the same industry and loca-
 tion create learning opportunities that enhance productivity.
 More recently, an influential paper by Lucas (1988) focuses
 on the benefits associated with urban areas that come from

 firms acquiring ideas from their neighbors. In Lucas' words:
 "We know that there are group interactions that are central
 to individual productivity. [...] We know that this kind of
 external effect is common to all the arts and sciences." The

 external effect of human capital, Lucas adds, is not limited
 to art and science. "Much of economic life is creative in

 much the same way as is art and science." Lucas argues that
 long-run income differences across countries can be ex-
 plained by human capital externalities in the form of learn-
 ing spillovers. In other models of learning, individuals
 augment their human capital through exchanges of ideas in
 meetings with more skilled neighbors (Boyan Jovanovic
 and Rafael Rob, 1989; Edward Glaeser, 1999). Acemoglu
 (1996) proposes an alternative model where human capital

 Because the composite good, y, is traded, its
 price is the same everywhere. Variation in the
 cost of living depends only on variation in cost
 of land, p, which is the same for all workers in
 a city. Workers maximize utility subject to a
 budget constraint by choosing quantities of the
 composite good and residential land. Workers
 and firms are perfectly mobile, and profits are
 assumed to be zero. Equilibrium is obtained
 when the utilities of workers in all cities are

 equal and firms in different cities have equal
 unit costs.

 The equilibrium for the simple case of only
 two cities, A and B, is described in Figure
 1. The upward-sloping lines in each panel
 represent indifference curves for the two edu-
 cation groups. Indirect utility of skilled and
 unskilled workers-VH(WH, p) and VL(wL, p),
 respectively-is a function of nominal wages
 and cost of land. The downward-sloping lines
 show combinations of wages and rents that hold
 constant firms' unit costs: C(wH, WL, p, r, S) = 1,
 where r is the price of capital, which is assumed

 externalities arise even without learning externalities. The
 goal of this paper is to test whether spillovers are empiri-
 cally relevant. Testing which of the explanations proposed
 in the theoretical literature is valid is beyond the scope of
 this paper.

 Rcnt-p
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 to be constant across cities. If human capital
 externalities exist, S enters the cost function. In
 cities with more human capital, firms can pro-
 duce the same level of output with less labor
 and capital. In equilibrium, utility of workers is
 equalized across locations: VH(WH, p) = kH and
 VL(WL, p) = kL for educated and uneducated
 workers, respectively. A zero-profit condition
 for the firm assures that production must take
 place along the downward-sloping curve. Thus
 the model has three equations (unit cost and
 indirect utility for each skill group) in three
 unknowns (wH, WL, and p). Point 1 in the left
 panel of Figure 1 represents the equilibrium
 combination of wage of educated workers and
 cost of land in city A. Point 1 in the right panel
 represents the same combination for uneducated
 workers.4

 Consider what happens if the share of
 college-educated workers is higher in city B
 than in city A. For example, suppose that, be-
 cause of technological differences, skilled
 workers are particularly productive in city B
 and demand for them is high. Skilled workers
 move to B, attracted by higher wages. Even
 without spillovers, wages are higher. Point 2
 represents the equilibrium in city B if there are
 no spillovers.5 If the spillover exists, then the
 isocost curve shifts further to the right. The
 magnitude of the spillover is the distance from
 2 to 3.

 In equilibrium, firms in city B are more pro-
 ductive than firms in city A. Since firms are free
 to relocate from A to B, why is productivity not
 driven to equality? Wages (and rent) are higher
 in city B, making firms indifferent between cit-
 ies. If the cost of land is not very important for
 firms, the increased productivity in B relative to
 A should be offset by increased labor costs in B
 relative to A. I will come back to this point in
 Section VII, where I compare my estimates of
 the difference in productivity between cities

 4 I follow Roback (1988) and take the level of utility kH
 and kL as parameters for simplicity. Closure of the model
 would require that the level of utility is made endogenous.
 This would complicate the model, without making it more
 insightful.

 5 In the absence of externalities, the wage of educated
 workers is higher in B because they are more productive.
 The wage of uneducated workers is higher because of
 complementarity (imperfect substitution).

 with high and low human capital with existing
 differences in labor costs.

 II. Econometric Framework

 The model in Section I indicates that, if hu-
 man capital spillovers exist, firms in cities with
 higher overall level of human capital S will be
 more productive. This paper estimates produc-
 tion functions to assess the magnitude of the
 productivity gains that are generated by human
 capital spillovers. The fundamental problem in
 estimating spillovers is the presence of unob-
 servable factors that affect productivity and are
 correlated with the overall level of human cap-
 ital across cities. It is possible that more pro-
 ductive firms are located in areas with higher
 levels of human capital for reasons independent
 of human capital externalities. I begin this sec-
 tion by introducing heterogeneity into the
 model described in the previous section. I then
 describe the econometric specification adopted,
 and discuss under what conditions human cap-
 ital spillovers can be empirically identified.

 A. Empirical Specification

 To see the implications of unmeasured pro-
 ductivity shocks, assume, as before, that tech-
 nology can be described by the following Cobb-
 Douglas production function:

 =\A M ;"Lj 1(tKP (1) Ypjct = pjct pjHctLpjctpjct

 where ypjct is output of plant p, belonging to
 industry j, in city c, and year t; j indexes 3-digit
 industries; Hpjct is the number of hours worked
 by skilled workers in the plant; Lpjct is the
 number of hours worked by unskilled workers;

 Kpjct is capital. Assume that Apjct is a function of
 the fraction of college-educated workers outside
 the firm in the same city. In addition, assume
 that productivity depends on various industry,
 city, and time components:

 (2) In Ajc,, = yS-j,, + Ep + Ej + Et + eC

 + Ejt + ect + Est + Epjct

 where S_jet is the share of college graduates
 among all manufacturing workers in city c with

 JUNE 2004 660
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 the exception of workers in industry j; and the
 E's are unobserved productivity shocks at the
 plant, city, state, industry, and year level (s
 indexes the state where city c is located). Equa-
 tion (2) captures only spillovers that occur
 within a city across 3-digit industries. It does
 not capture potential spillovers that occur
 within a plant, which are likely to be internal-
 ized. Nor does it capture spillovers that occur
 between plants in the same 3-digit industry,
 because estimation of these types of spillovers
 is not empirically feasible due to data limita-
 tions. To the extent that spillovers between
 plants in the same 3-digit industry are large,
 estimates of y are to be interpreted as a lower
 bound on the magnitude of total spillovers.6 For
 now, equation (2) captures only spillovers gen-
 erated within manufacturing. Later, I generalize
 this assumption and I include the college share
 in other industries.

 In logs the production function becomes

 (3) In y,jc = yS-jct + aHjln Hpjct + aLjln Lpjc,

 + /3,ln Kpj,, + p + E + E, + Ec

 + Ejt E + e + et + Epjct.

 The main concern in estimating the key co-
 efficient y is the presence of unobservable pro-
 ductivity shocks that are correlated with college
 share. Any positive correlation between the E's
 and S_jct will result in overestimates of y.7

 6 In theory, a more general specification would allow for
 spillovers between plants in the same 3-digit industry. This
 alternative specification would replace S_jct in equation (2)
 with S_pjct, which is the college share in all manufacturing
 plants in city c with the exception of plant p. As it will be
 clear below, this is not feasible because of data limitations.

 Note, however, that the 3-digit industry classification is very
 detailed, and in many cases there is only one plant per city
 in each 3-digit industry, so that S-jc = S-pjct

 7 For example, the term Ep captures unmeasured plant
 characteristics that do not change over time, such as the
 quality of machines, patents, quality of management, and
 the culture within the firm; ec captures permanent city
 characteristics, such as public infrastructure, weather con-
 ditions, the presence of research universities, and efficiency
 of local authorities; et captures general trends in technology
 that affect all plants as well as variation in productivity over
 the business cycle; ej captures fixed industry characteristics;
 Ect is a time-specific shock that affects productivity of all
 plants in city c, irrespective of the industry, such as the
 opening of an airport, the construction of a rail link or a

 A major advantage of using a longitudinal
 plant-level data set is that I am able to control
 for many permanent and time-varying factors
 that may affect both productivity and overall
 college share. Specifically, I estimate a produc-
 tion function that includes plant fixed effects
 (dp), industry X year effects (dj), and state X
 year effects (dst):

 (4) In Ypjst = yS-jc + ln Hpjc + Ljln Lpjct

 + jln Kpjct + dp + djt + ds + Ect + epjct.

 Equation (4) is the basis of the empirical
 analysis in this paper. The coefficients on cap-
 ital and labor are allowed to vary across indus-
 tries, reflecting technological differences. Plant
 fixed effects fully absorb any permanent het-
 erogeneity at the plant, city, or industry level
 (ep, Ec, and ej). Because of the inclusion of plant
 fixed effects, identification is based on changes
 over time in the external college share. State x
 year effects absorb any state-specific time-
 varying shocks that are shared by all plants in
 the same state (Est). Similarly, industry x year
 absorb any industry-specific time-varying shocks

 (ejt). In the most robust models, I also include
 industry x state X year effects (djst). In these
 models, identification comes from changes over
 time within a state and industry. To account for
 at least some time-varying city-specific hetero-
 geneity, in some specifications I control for city
 characteristics that are potentially correlated
 with college share, such as city population, un-
 employment rate, and racial composition.

 The main source of heterogeneity that is not
 controlled for in equation (4) is the time-
 varying, city-specific shock: ct. The possible
 correlation between Ect and college share in all
 other industries in the same city, S-jct, is a
 concern. Note that correlation between Ect and
 college share in the same industry, Sjt, would
 not, in itself, result in biased estimates.

 freeway; Ej, captures industry and year-specific shocks, such
 as the introduction of an industry-specific new technology;
 E,t captures state- and time-specific shocks.

 8 In theory one might think to absorb Ec, with city X year
 effects. In practice, though, this is not feasible, because such
 a model would be almost completely saturated. Since
 3-digit industries are small, most of the variation in S-jc, is
 at the city X year level.
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 B. Threats to Identification

 The key identifying assumption is that after
 controlling for plant effects, industry X state X
 year effects and time-varying city-observable
 characteristics, the fraction of college graduates

 S-jct is uncorrelated with unobserved citywide
 shocks Ect One example where this assumption
 is valid is if differences in residual changes in
 college share across cities are driven by changes
 in tastes of more-educated people.

 What are examples of situations that would
 violate my identifying assumption? The possi-
 bility that plants with better machines or better
 management are located in areas with higher
 college shares is unlikely to constitute a major
 problem here, as plant fixed effects absorb both
 plant- and city-specific permanent heterogene-
 ity. Changes in local business-cycle conditions
 could in theory affect both productivity changes
 and changes in college share. However, it seems
 unlikely that differences in the business cycle
 could constitute a major problem here, since
 most of the variation in business cycle is ab-
 sorbed by the state X year and industry X year
 dummies. Furthermore, in some specifications, I
 control for state X industry X year dummies.

 Many types of skill-biased technological
 shocks are also unlikely to violate my assump-
 tion. One example could be the introduction of
 computers. If computers are adopted equally by
 all firms, the productivity of skilled workers
 will increase in all industries and cities relative

 to the productivity of unskilled workers. Be-
 cause I control for skilled and unskilled labor in

 each plant, this type of shock should not bias
 my estimates.9 Similarly, industrywide skill-
 biased technological shocks are unlikely to pose
 a major threat to my empirical design, because
 I control for the distribution of skills in each

 plant and the coefficients on skilled labor and
 unskilled labor are allowed to vary by indus-
 try.10 A similar conclusion holds in the case of

 9 The only effect should be an increase in the coefficient
 on skilled labor. Empirically, I find that, consistent with a
 skill-biased technical change story, the coefficient on skilled
 workers does increase in 1990 relative to 1980.

 10 For example, a skill-biased technology shock that af-
 fects the computer industry will result in a larger coefficient
 on skilled labor for plants in that industry. Furthermore, it is
 plausible that most computer producers across the nation or

 a skill-biased technological shock that is spe-
 cific to all plants in one industry in one city. For
 example, consider a shock to the computer in-
 dustry in San Jose that does not affect the com-
 puter industry in San Francisco. If the shock is
 not transmitted to other industries in San Jose,
 this shock would not affect college share in
 other industries, and therefore would not result
 in biased estimates.1t

 In general, in order for a shock to induce
 spurious correlation in equation (4), the produc-
 tivity shock must be (1) citywide, (2) time-
 varying, and (3) must be correlated with college
 share across cities within a state and industry.
 One potential example of such shock is the
 opening of an airport or a freeway. If the new
 infrastructure raises the productivity of all ex-
 isting manufacturing plants in the city, and at

 at least in California would be experiencing similar in-
 creases in productivity, so that industry X year x state
 effects would absorb most of this unobserved shock.

 1 On the other hand, a city-specific skill-biased techno-
 logical shock that is shared by all plants could be problem-
 atic. This could be the case, for example, if plants tend to
 borrow technologies from other industries in the same city.
 If this type of shock affects all manufacturing plants in some
 cities but not in other cities in the same state and also raise

 the aggregate stock of skilled workers in those cities, then
 my estimates would overstate the magnitude of human
 capital spillovers.

 Another case where my strategy would fail to fully
 account for skill-biased technological shocks is the case of
 endogenous technological change-where firms choose
 their technology based on the number of skilled workers in
 the city. Suppose that a new technology is introduced that
 raises the productivity of skilled workers, and that there are
 different intensities of adoption available to firms. Assume
 also that firms choose the intensity of adoption based both
 on the skill intensity in the firm and on the overall stock of
 skilled workers in their local economy. In particular, assume
 that, holding constant the skill intensity in the firm, firms
 located in cities with a larger fraction of skilled workers
 choose the version of the technology which has the largest
 effect on productivity. In this case, two identical firms,
 employing the same number of skilled and unskilled work-
 ers, would experience different unobserved productivity
 shocks, and these shocks would be proportional to the stock
 of skilled workers in each city. This scenario depends on the
 assumption that technology adoption depends not only on
 the skill intensity inside the firm, but also on the fraction of
 skilled workers outside the firm in the same city. Although
 there are theoretical models built on this or similar assump-
 tions (Acemoglu, 1996), I am not aware of any empirical
 study that investigates this hypothesis for U.S. cities.

 JUNE 2004 662
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 the same time attracts more college graduates to
 the city, estimates of y will be too large. These
 kinds of shocks are not likely to be very impor-
 tant in my sample period.

 Perhaps a more plausible source of bias is
 changes in the unobserved quality of workers.
 Although I control for the skill level of workers
 in each plant, it is in theory possible that work-
 ers of higher unmeasured ability move to cities
 that experience larger increases in college share.
 I discuss this issue in greater length in Section
 VI, subsection B, providing some evidence that
 heterogeneity in workers' quality is not in fact
 driving my results [see equation (7)].

 In sum, while I cannot completely rule out
 the possibility that at least some of the estimated
 effect reflects citywide, time-varying productiv-
 ity shocks, it appears that many plausible
 sources of spurious correlation are accounted
 for. In Sections V and VI, I describe additional
 specification tests that may help in assessing the
 validity of my assumptions.

 A final concern is that capital and labor inputs
 should in theory be treated as endogenous. Un-
 like the usual case of estimation of production
 functions, here the focus is not on estimating the
 coefficients on capital and labor, but it is on
 estimating y. Endogeneity of capital and labor
 is an issue only to the extent that it results in
 biased estimates of y. Throughout the paper, I
 assume that, after controlling for plant effects,
 industry X year effects, and state X year ef-
 fects, endogeneity of capital and labor does not
 significantly bias estimates of y. This assump-
 tion is potentially problematic.12 To assess the
 sensitivity of my results to this assumption, in
 Section VI, subsection B, I directly measure
 total factor productivity (TFP) and then explain
 changes in TFP as a function of changes in S.
 This strategy does not involve estimating the
 production function, but it relies on the assump-
 tion that factor prices equal marginal products.
 Results are generally consistent with results
 from the main specification obtained by directly
 estimating the production function, suggesting
 that endogeneity of capital and labor does not
 introduce a large bias in the main specification.

 12 For example, the work by Steven Davis and John
 Haltiwanger (1999) suggests that industry-state shocks do
 not explain microfluctuations in labor.

 III. Data

 The data come from a unique match between
 plant records from the Census of Manufacturing
 in 1982 and 1992 and worker characteristics
 from the Census of Population. The Census of
 Manufacturers is a longitudinal data set that
 covers the universe of manufacturing establish-
 ments with one paid employee or more. The
 unit of observation in the Census of Manufac-
 turers is the plant.13 Two important advantages
 of the Census of Manufacturers are its panel
 structure, and that it has a sample size large
 enough to allow a disaggregation of the data by
 metropolitan area.

 Although the Census of Manufacturers con-
 tains detailed information on the number of
 hours worked in each plant, information on the
 education level of workers is not reported. To
 obtain data on workers' education, I match
 workers in the 1980 and 1990 Censuses of Pop-
 ulation to firms in the Census of Manufacturers,

 by industry and city. Specifically, I assign each
 plant in the Census of Manufacturers and each
 worker in the Census of Population to a city-
 industry cell based on the metropolitan area
 code and a 3-digit industry definition. The
 3-digit industry definition is quite detailed, so
 the cells are narrow. Examples of 3-digit indus-
 tries include: iron and steel foundries (SIC 332);
 engines and turbines (SIC 351); electronic com-
 puting equipment (SIC 357); soaps and cosmet-
 ics (SIC 284). For each city-industry cell, I use
 the Census of Population to calculate the frac-
 tion of hours worked by individuals with college,
 some college, high school, and less than high
 school. I combine this information with plant-
 level information on the total number of hours
 worked from the Census of Manufacturers to im-

 pute the number of hours worked by each educa-
 tion group in each plant. This imputation strategy
 is similar (although not identical) to the one
 adopted by Judith K. Hellerstein et al. (1999).

 For city-industry cells for which there is only
 one plant, the matching is exact. In some cells,
 however, there is more than one plant. One
 example is "Motor Vehicles and Passenger Car
 Bodies" (SIC 371) in Detroit. For cells for

 13 A company operating at more than one location is
 required to file a separate report for each location.

 663 VOL. 94 NO. 3

This content downloaded from 128.135.12.127 on Thu, 12 May 2016 01:31:03 UTC
All use subject to http://about.jstor.org/terms



 THE AMERICAN ECONOMIC REVIEW

 TABLE 1-SUMMARY STATISTICS

 1982 1992

 Standard Standard

 Mean deviation Mean deviation

 (1) (2) (3) (4)

 Value of output (X1,000) 19,944.0 163,592.5 20,938.7 174,087.5
 Added value ( 1,000) 8,019.1 55,307.8 9,412.53 69,566.91
 Capital (X1,000) 7,042.1 62,003.4 8,007.13 62,502.58
 Hours worked (X 1,000) 223.2 432.4 222.7 435.7
 Hours worked by college 38.9 309.5 39.0 310.8

 graduates (X 1,000)
 Hours worked by workers with 43.5 338.6 67.7 333.7

 some college ( 1,000)
 Hours worked by high school 90.4 342.4 73.7 310.0

 graduates (X 1,000)
 Hours worked by high school 50.2 249.4 42.4 136.8

 dropouts (X 1,000)
 High tech 0.099 0.298 0.099 0.298
 Average hourly wage 13.54 5.50 13.73 5.40
 Belong to multiunit firm 0.25 0.43 0.29 0.45
 College share in other industries 0.161 0.042 0.191 0.061
 Number of plants 40,281 40,81

 Note: Monetary values are in 1992 dollars.

 which there are more than one plant, the impu-
 tation is based on the assumption that the frac-
 tion of hours worked by each education group is
 the same for all plants in the same cell. In the
 Detroit example, this assumption allows "Motor
 Vehicles and Passenger Car Bodies" plants in
 Detroit to have different number of hours worked,

 but requires the fraction of hours worked by col-
 lege graduates, individuals with some college,
 high school graduates and high school dropouts
 to be the same for all plants in that industry in
 Detroit. The Data Appendix provides a detailed
 description of the Census of Population and
 Census of Manufacturers and the matching al-
 gorithm. The matched sample is a balanced
 panel with 40,281 plants. Descriptive statistics
 for the matched sample are reported in Table 1.

 In the preferred specification, I estimate
 equation (4) controlling for the number of hours
 worked by individuals belonging to two educa-
 tion groups: high school or less [L in equation
 (4)]; and some college or more [H in equation
 (4)]. Since plants in cities with a more-educated
 labor force are more likely to employ educated
 workers, obtaining a good estimate of the skill
 distribution in each plant is particularly impor-
 tant. Failing to adequately control for the skill
 level of workers in the plant may result in an
 upward bias in the estimated spillover.

 To assess whether this is an issue, I test
 whether my results are robust to a finer charac-
 terization of the education distribution of work-

 ers in the plant. For example, I control for hours
 worked by three education groups: high school
 or less, some college, college or more. In other
 models, I also exploit the information available
 in the Census of Manufacturers on the number

 of hours worked by production and nonproduc-
 tion workers in each plant-basically hours
 worked by blue and white collar workers. These
 models separately control for hours worked by
 production workers belonging to two (in some
 cases three) education groups and hours worked
 by nonproduction workers belonging to two (in
 some cases three) education groups.14 Empiri-

 141 impute hours worked in the plant by production and
 nonproduction workers belonging to different education
 groups using a strategy similar to the one just described. For
 each city-3-digit industry cell, I use the Census of Popula-
 tion to calculate the fraction of hours worked by production
 and nonproduction workers based on occupation. I assume
 that workers who in the Census of Population have blue-
 collar occupations are production workers, and workers who
 have white-collar occupations are nonproduction workers. I
 combine this information with plant-level information on
 the total number of hours worked by production and non-
 production workers from the Census of Manufacturers to
 impute the number of hours worked by each education-
 occupation group in each plant.

 664  JUNE 2004

This content downloaded from 128.135.12.127 on Thu, 12 May 2016 01:31:03 UTC
All use subject to http://about.jstor.org/terms



 MORETTI: EDUCATION, SPILLOVERS, AND PRODUCTIVITY

 cally, I find that my estimates are not sensitive
 to different ways of accounting for the distribu-
 tion of human capital inside the plant.

 As a way to check the reliability of the matched
 worker-firm data, I estimate plant-level wage
 equations. If the matching is correct and measure-
 ment error is not too large, I expect wage equation
 coefficients to be close to the ones usually found
 in the wage equation literature. I show in the
 Appendix that this in fact seems to be the case.

 In interpreting the results I present below, it
 is important to bear in mind a limitation of the
 data. The longitudinal data set that I use is not
 necessarily representative of the full population
 of plants, because it only includes plants that are
 observed both in 1982 and 1992. One conse-

 quence is that large plants are more likely to be
 in the sample. In some models, I reweight the
 observations so that the distribution of plant size
 and other observable plant characteristics repro-
 duces the distribution in the original population
 (see Section VI, subsection B). Note, also, that
 by controlling for capital and labor inputs, all
 models effectively control for plant size.15

 The key independent variable is college share
 in the city outside the industry, S_j t. I use the
 Census of Population to obtain an estimate of
 S_jct. An alternative specification would be to
 use average years of schooling instead of col-
 lege share. There is no obvious a priori reason
 to choose one measure of aggregate human cap-
 ital over the other.16 I re-estimated all the mod-

 els using average schooling instead of college
 share, and obtained results that are qualitatively
 similar to the one presented here.17

 IV. Estimates of Human Capital Spillovers

 I now turn to the empirical results. As depen-
 dent variables, I can use either value of ship-
 ments or value added, which is value of

 15 I have also looked at whether the probability that a
 plant exists in 1982 but not in 1992 is correlated with the
 change in the city college share. I find that this is not the case.

 16 In previous work I have used college share (Moretti, 2004).
 17 It is important to note that spillovers may arise not

 only from the share of college graduates in an area, but also
 from their total number or their density. In this paper, I
 focus on spillovers that arise from the share of college
 graduates. I do not capture spillovers arising from density of
 human capital. When I control for changes in city popula-
 tion, my estimates do not change significantly.

 shipments minus cost of materials. Previous lit-
 erature suggests that neither measure is per-
 fect.18 I present results based on value added,
 but I have reestimated all the models using
 value of shipments and obtained similar results.
 I report results based on value of shipments in
 Table 8 below.

 Cross-Sectional Estimates.-I begin by pre-
 senting cross-sectional estimates of plant-level
 production functions. Columns (1) and (2) in
 Table 2 refer to a specification where technol-
 ogy is Cobb-Douglas. The coefficient y on col-
 lege share outside the industry in columns (1)
 and (2) is 0.84 in 1992 and 0.81 in 1982, indi-
 cating that a one-percentage-point increase in
 the overall share of college graduates in the city
 (excluding the industry a plant belongs to) is
 associated with an increase in productivity by
 0.8 percent. Through the paper, standard errors
 are corrected for city-year clustering.

 The models control for capital stock, hours
 worked by skilled and unskilled labor, a dummy
 equal to one if the plant belongs to a multiunit
 firm, and 3-digit industry dummies. Capital
 stock for equipment and structures is measured
 from the book values deflated by capital stock
 deflators.19 Hours worked by unskilled workers
 are hours worked by workers who have a high
 school degree or less. Hours worked by skilled
 workers are hours worked by college graduates
 or workers with some college. Columns (3) and
 (4) refer to a specification where technology is
 translog. The coefficient on college share is
 invariant to this change.20

 Longitudinal Estimates.-I now turn to lon-
 gitudinal models. Table 3 reports estimates of

 18 Hellerstein et al. (1999) point out that value added has
 two advantages over value of shipments. First, a value-
 added specification can be derived from polar production
 functions: one in which the elasticity of substitution be-
 tween materials and value added is infinite; and one in
 which this elasticity of substitution is zero. Second, a value
 of shipment specification requires one to include value of
 materials on the right-hand side. This specification may be
 problematic given the potential endogeneity of materials.

 19 Because capital enters in log, the deflator is fully
 absorbed when industry dummies are included.

 20 The coefficients on capital and labor appear to vary
 significantly between 1982 and 1992. I do not have a good
 explanation for this change.
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 TABLE 2-ESTIMATES OF PRODUCTION FUNCTIONS: CROSS-SECTIONAL SPECIFICATION

 Cobb-Douglas

 1992 1982

 (1) (2)

 Translog

 1992 1982

 (3) (4)

 College share in other industries

 In Capital

 In Unskilled labor

 In Skilled labor

 In Unskilled labor squared

 In Skilled labor squared

 In Capital squared

 In Unskilled X In skilled

 In Unskilled x In capital

 In Skilled X In capital

 Multiunit

 Industry effects
 R2

 0.846

 (0.102)
 0.178

 (0.004)
 0.470

 (0.014)
 0.382

 (0.015)

 0.150

 (0.008)
 Yes

 0.89

 0.812

 (0.113)
 0.476

 (0.010)
 0.333

 (0.012)
 0.196

 (0.010)

 0.073

 (0.011)
 Yes

 0.89

 0.834

 (0.107)
 0.501

 (0.050)
 0.606

 (0.040)
 0.465

 (0.039)
 0.098

 (0.011)
 0.068

 (0.011)
 0.048

 (0.002)
 -0.111

 (0.018)
 -0.075

 (0.010)
 -0.028

 (0.011)
 0.122

 (0.012)
 Yes

 0.91

 0.807

 (0.133)
 0.657

 (0.057)
 0.332

 (0.050)
 0.265

 (0.060)
 0.096

 (0.010)
 0.053

 (0.012)
 0.024

 (0.002)
 -0.022

 (0.014)
 -0.095

 (0.016)
 -0.047

 (0.016)
 0.069

 (0.012)
 Yes

 0.90

 Notes: Standard errors adjusted for clustering are in parentheses. Each column is a separate
 regression. All labor inputs are measured in number of hours worked. Specifically, unskilled
 labor is hours worked by workers who have a high school degree or less; skilled labor is hours
 worked by college graduates or workers with some college. Industry effects are dummies for
 3-digit industries. N = 40,281. See text for details.

 variants of equation (4). The rows of the table
 differ in the way the regressions control for the
 level of human capital of workers within the
 firm. Like in Table 2, models in row 1 control
 for hours worked by workers who have a high
 school degree or less and for hours worked by
 workers with at least some college. Column (1)
 is analogous to the models in Table 2 but adds
 plant fixed effects. Identification of the spillover
 comes from changes in productivity and college
 share between 1982 and 1992. The coefficient

 on college share in column (1) is 0.74.21 Plant
 fixed effects purge estimates of permanent plant
 and city unobserved heterogeneity. The fixed-
 effects estimator may still be biased if there are

 21 The coefficients on log capital, log skilled labor, and
 log unskilled labor are, respectively: 0.185 (0.005), 0.492
 (0.013), 0.384 (0.011). R2 is 0.95.

 transitory unobserved factors that affect both
 changes in college share and changes in produc-
 tivity. In the specifications in columns (2), (3),
 and (4), I include, respectively, industry X year
 dummies, state X year dummies, and indus-
 try X state X year dummies. The coefficients
 are between 0.51 and 0.77.

 In the specification used in columns (1) to
 (4), the intercept of the production function is
 allowed to vary across plants, but the slope
 coefficients are constrained to be the same. In

 reality, however, it is possible that the relative
 importance of capital and labor varies across
 industries. In column (5), I relax the restriction
 that technology is the same across industries
 and allow the slope coefficients on capital and
 labor to vary by 2-digit industry. The coefficient
 in column (5) is slightly smaller than the one in
 column (4).

 In columns (6) to (10), the assumption of
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 TABLE 3-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS

 Cobb-Douglas Translog

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

 Panel A

 (1) Controlling for Two Education Groups Inside Plant
 College share in other industries 0.743 0.510 0.734 0.777 0.702 0.672 0.457 0.660 0.711 0.604

 (0.183) (0.160) (0.226) (0.226) (0.220) (0.172) (0.154) (0.212) (0.215) (0.211)

 (2) Controlling for Three Education Groups Inside Plant
 College share in other industries 0.684 0.511 0.688 0.736 0.694 0.584 0.441 0.593 0.656 0.539

 (0.195) (0.171) (0.245) (0.207) (0.221) (0.181) (0.225) (0.225) (0.210) (0.211)

 Panel B

 (3) Controlling for Two Education Groups for PW + Two Education Groups for Non-PW
 College share in other industries 0.847 0.595 0.834 0.883 0.914 0.747 0.498 0.724 0.757 0.719

 (0.181) (0.160) (0.231) (0.222) (0.211) (0.169) (0.152) (0.211) (0.214) (0.212)

 (4) Controlling for Three Education Groups for PW + Three Education Groups for Non-PW
 College share in other industries 0.687 0.557 0.669 0.795 0.888 0.603 0.464 0.568 0.671 0.589

 (0.215) (0.194) (0.259) (0.254) (0.235) (0.202) (0.182) (0.232) (0.237) (0.236)

 Establishment effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
 Industry X year effects Yes Yes
 State X year effects Yes Yes
 Industry X state X year Yes Yes Yes Yes
 Technology varies by industry Yes Yes

 Notes: Standard errors adjusted for clustering are in parentheses. The equation estimated is variants of equation (4). In row
 1, models control for hours worked inside the plant by two education groups (high school or less, some college or more). In
 row 2, models control for hours worked inside the plant by three education groups (high school or less, some college, college).
 In row 3, models control for hours worked inside the plant by production workers belonging to two education groups and for
 hours worked inside the plant by nonproduction workers belonging to two education groups (high school or less, some college
 or more). In row 4, models control for hours worked inside the plant by production workers belonging to three education
 groups and for hours worked inside the plant by nonproduction workers belonging to three education groups (high school or
 less, some college, college). All models also control for capital. Models in columns (6) to (10) also control for capital squared,
 hours worked by each education group squared, and all the interactions. Each entry is a separate regression. There are 40,281
 plants, observed in both 1982 and 1992.

 Cobb-Douglas technology is relaxed and a more
 general translog production function is esti-
 mated. The coefficient on college share is gen-
 erally lower, but not statistically different from
 the one obtained from the corresponding Cobb-
 Douglas specification.

 From the results in row 1, I conclude that
 estimates of the coefficient on college share
 outside the industry are generally robust to dif-
 ferent specifications. After controlling for a
 plant's own level of human capital, plants lo-
 cated in areas where the overall level of human

 capital increased became more productive than
 similar plants located in areas where the overall
 level of human capital did not change. This
 increased productivity does not seem to be
 driven by industry-specific or state-specific

 shocks because it is robust to the inclusion of

 state X year and industry X year dummies.
 According to the most robust estimate in col-

 umns (5) and (10), an increase of one percentage
 point in college share outside the industry is asso-
 ciated with a productivity increase equal to 0.6-
 0.7 percent. To help interpret the magnitude of the
 coefficient, consider that the average yearly in-
 crease in college share between 1982 and 1992
 was about 0.2 percentage points. According to my
 estimate, an increase in college share of 0.2 per-
 centage points would be associated with an in-
 crease in output by about 0.12-0.14 percent. For
 the average plant in the United States, this
 amounts to about $10,000 per year. I discuss the
 magnitude of the estimated effect in Section VII.

 A key question is whether variation in college
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 share outside the plant's industry is proxying for
 variation in the education of workers in the

 plant. The specification adopted in row 1 con-
 trols for education of workers in the plant by
 conditioning on the imputed number of hours
 worked by employees with a high school degree
 or less and the number of hours worked by
 employees with some college or more. It is in
 theory possible that the characterization of the
 education distribution of workers in the plant
 based on these two education groups is not fine
 enough. In particular, it is possible that the
 educational achievement of workers inside the

 plant within each education group is not con-
 stant across cities. For example, the composi-
 tion of the group of plant employees that I call
 "skilled"-those with some college or more-
 may differ across cities, and may be systemat-
 ically correlated with the overall level of human
 capital in the city. In other words, the group of
 plant employees with some college or more
 could have relatively more college graduates
 than community college graduates in cities
 where aggregate college share outside the
 plant's industry is high. In this case, the esti-
 mates of the spillover presented in row 1 would
 be biased, because they would reflect the corre-
 lation between workers' education in the plant
 and workers' education outside the plant.

 I test whether my estimates are sensitive to a
 finer characterization of the education distribu-

 tion of workers in the plant. The model in row
 2 controls for hours worked by three education
 groups: high school or less, some college, col-
 lege or more. If the group of plant employees
 with some college or more has relatively more
 college graduates than community college grad-
 uates in cities with high aggregate human cap-
 ital, then estimates in row 2 should be lower than
 estimates in row 1. I find that estimates in row 2

 are slightly lower than estimates in row 1, but that
 the difference is not statistically significant.

 In Panel B, I allow for an even finer charac-
 terization of the education distribution of work-

 ers in the plant by using the information
 available on production and nonproduction
 workers. Simply controlling for hours worked
 by production and nonproduction workers it is
 not enough to adequately control for human
 capital in the plant. Although nonproduction
 workers tend to have higher education than pro-
 duction workers, the correlation is by no means

 perfect. Mark Doms et al. (1997) report that
 only 40 percent of nonproduction workers in the
 Census of Manufacturers have a college degree
 and more than 27 percent of production workers
 have a community college degree. For this rea-
 son, in Panel B I control not only for the number
 of hours worked by production and nonproduc-
 tion workers, but also for the imputed educa-
 tional achievement of workers in the two

 groups. Specifically, models in row 2 control for
 imputed hours worked by production workers
 with a high school degree or less, imputed hours
 worked by production workers with some col-
 lege or more, imputed hours worked by nonpro-
 duction workers with a high school degree or
 less, and imputed hours worked by nonproduc-
 tion workers with some college or more. Mod-
 els in row 4 push this specification even further
 by allowing for three education groups for pro-
 duction workers and three for nonproduction
 workers. Results in rows 3 and 4 are generally
 consistent with those in Panel A.

 Overall, I conclude that my estimates are not
 very sensitive to different ways to control for
 human capital of workers in the plant. In the
 remainder of the paper, I report results based on
 the most parsimonious specification of row 1
 (two education groups inside the plant), al-
 though results do not change significantly when
 I use alternative specifications.

 High Tech vs. Low Tech.-As a first specifi-
 cation test, I test whether human capital spill-
 overs matter more for the production of
 advanced, high-tech products (computers, sci-
 entific equipment, biotech, or pharmaceutical)
 than for the production of mature, low-tech
 products (cement, steel, or lumber). If I find that
 human capital spillovers were more important
 for cement plants than for computer or biotech
 plants, then that would cast doubt on the inter-
 pretation of the spillovers. More importantly, I
 test whether human capital in the high-tech sec-
 tor of the city matters more for high-tech plants
 than human capital in the low-tech sector of the
 city; and whether human capital in the low-tech
 sector matters more for low-tech plants than hu-
 man capital in high tech. Just as I expect people
 in computers to benefit more from human cap-
 ital spillovers, I expect them to benefit more
 from educated people in electronics than from
 educated people working in the textile sector.
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 TABLE 4-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS,
 BY HIGH-TECH STATUS

 Plant is high tech
 (1)

 Plant is low tech

 (2)

 Regression A: Cobb-Douglas
 College share in high tech outside relevant 1.70 0.14
 3-digit industry (0.31) (0.22)

 College share in low tech outside relevant 0.22 0.80
 3-digit industry (0.88) (0.50)

 Regression B: Translog
 College share in high tech outside relevant 1.60 0.07
 3-digit industry (0.30) (0.22)

 College share in low tech outside relevant 0.26 0.89
 3-digit industry (0.87) (0.53)

 Establishment effects Yes Yes

 Industry X state X year Yes Yes

 Notes: Standard errors adjusted for clustering are in parentheses. Both models control for
 capital, hours worked by skilled and unskilled workers. All entries in each panel are from the
 same regression. For example, the entry in row 1, column (1) is the coefficient on college
 share in high-tech industries (outside relevant 3-digit industry) interacted with a dummy equal
 to one if the relevant plant is high tech. The entry in row 1, column (2) is the coefficient on
 college share in high-tech industries (outside relevant 3-digit industry) interacted with a
 dummy equal to one if the relevant plant is low tech. There are 40,281 plants, observed in both
 1982 and 1992. See text for details.

 The top panel in Table 4 reports estimates
 from a regression that includes both aggregate
 college share in the high-tech sector and aggre-
 gate college share in the low-tech sector (ex-
 cluding the relevent 3-digit industry), separately
 for high-tech plants and low-tech plants. Entries
 in each panel come from one regression. For
 example, the entry in row 1, column (1) is the
 coefficient on college share in high-tech indus-
 tries (outside relevant 3-digit industry) inter-
 acted with a dummy equal to one if the relevant
 plant is high tech. To classify productions as
 high tech or low tech, I used the definition of
 high-tech industries provided by the American
 Electronic Association (1997) based on 45
 4-digit SIC codes.22

 The coefficient on high-tech college share for
 high-tech plants is 1.70, more than double the
 coefficient on low-tech college share for low-

 22 The definition includes computers and office equip-
 ment, consumer electronics, communication equipment,
 electronic components, semiconductors, industrial electron-
 ics, photonics, defense electronics, electromedical equip-
 ment, software and computer-related services, and
 telecommunication services. According to this definition,
 about 10 percent of the plants in the sample are high tech.

 tech plants. This indicates that high-tech plants
 benefit from spillovers more than low-tech plants.
 The off-diagonal elements are smaller, indicating
 that aggregate human capital in high-tech indus-
 tries has little effect on productivity in low-tech
 plants, and aggregate human capital in high-tech
 industries has little effect on productivity in low-
 tech plants. Estimates in the lower panel, based on
 a translog specification, are similar.

 Spillovers at the 1-Digit and 2-Digit Industry
 Level.-The estimates reported so far are a
 measure of the spillover generated by college
 share in the entire manufacturing sector in the
 relevant city (excluding the relevant 3-digit in-
 dustry). I now refine the analysis by investigat-
 ing how the magnitude of the estimated
 spillover varies when I consider a finer industry
 breakdown. In particular, I compare the effect
 of the share of college graduates in the city and
 2-digit industry a plant belongs to (excluding
 the relevant 3-digit industry) with the effect of
 the share of college graduates in the entire man-
 ufacturing sector in the city (excluding the rel-
 evant 2-digit industry). Spillovers between
 plants that belong to similar industries should
 be larger than spillovers between plants that
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 TABLE 5-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL SPILLOVERS AT THE 2-DIGIT AND
 1-DIGIT INDUSTRY LEVEL

 Cobb-Douglas Translog

 (1) (2) (3) (4)

 College share in 2-digit industry excluding 1.008 0.956 0.917 0.879
 relevant 3-digit indusry (0.300) (0.315) (0.304) (0.310)

 College share in manufacturing excluding 0.751 0.683 0.632 0.579
 relevant 2-digit industry (0.242) (0.293) (0.271) (0.286)

 Establishment effects Yes Yes Yes Yes

 Industry X state X year Yes Yes Yes Yes
 Technology varies by industry Yes Yes

 Notes: Standard errors adjusted for clustering are in parentheses. Row 1 reports the coeffi-
 cients on the share of college graduates in 2-digit industry the plant belongs to, calculated
 excluding the 3-digit industry the plant belongs to. Row 2 reports the coefficients on the share
 of college graduates in manufacturing, calculated excluding the 2-digit industry the plant
 belongs to. All models control for capital, hours worked by skilled and unskilled workers, and
 establishment effects. Each column is a separate regression. There are 40,281 plants, observed
 in both 1982 and 1992.

 belong to industries that are different. Finding that
 the latter effect is larger than the former effect
 would cast doubt on the validity of my estimates.

 Estimates in columns (1) and (2) of Table
 5 indicate that the coefficient on the share of

 college graduates in the 2-digit industry a plant
 belongs to (excluding the relevant 3-digit indus-
 try) is about 0.95-1.00, or about 30 percent
 larger than the coefficient on the share of col-
 lege graduates in the entire manufacturing sec-
 tor (excluding the relevant 2-digit industry).
 Estimates in columns (3) and (4) based on a
 translog specification, yield a similar conclusion.

 I try to push this exercise even further by
 experimenting with a measure of spillovers at
 the 3-digit industry level. In theory, spillovers
 should be larger when measured at the 3-digit
 level than when measured at the 2-digit or
 1-digit level. However, this comparison is made
 difficult by data limitations. I cannot estimate a
 model that includes college share at the 3-digit
 industry level because, at that level of disaggre-
 gation, I cannot distinguish between education
 in the plant and outside the plant. Instead, I use
 the 3-digit share of nonproduction workers (ex-
 cluding the relevant plant) as a proxy for the
 3-digit share of college graduates outside the
 plant.23 Estimates of models similar to the ones

 23 To facilitate the comparison with Table 3, I normalize
 the share of nonproduction workers so that it has the same
 mean and standard deviation as the share of college graduates.

 in columns (4) and (5) in Table 3 are 0.667
 (0.478) and 0.746 (0.502), respectively. A direct
 comparison with estimates in Tables 3 and 5 is
 not possible, because the share of nonproduc-
 tion workers is an imperfect proxy for the share
 of college educated. Although nonproduction
 workers do tend to be more educated than pro-
 duction workers, only 40 percent of nonproduc-
 tion workers are college educated (Doms et al.,
 1997). Because of attenuation bias, the esti-
 mated parameters are lower than the parameters
 one would obtain if it were possible to estimate
 the same models substituting the 3-digit share of
 nonproduction workers with the 3-digit share of
 college graduates.

 V. Do Human Capital Spillovers Decline with
 Economic and Technological Distance?

 The findings on high-tech plants in Table
 4 and 2-digit industries in Table 5 provide a first
 piece of evidence that, within a city, the mag-
 nitude of the spillover depends on economic
 proximity. In this section, I use three alternative
 measures of economic distance to investigate
 more directly the relationship between eco-
 nomic distance and spillovers. Specifically, I
 investigate whether human capital spillovers
 within a city between industries that are eco-
 nomically close are larger than spillovers be-
 tween industries that are economically distant.
 Finding that human capital spillovers are large
 between industries that are located in the same
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 city but are economically distant would be sur-
 prising and would cast doubt on the validity of
 my results.

 I modify equation (4) to include college share in
 Manufacturing, as well as college share in Trans-
 portation, Communication and Utilities; Trade (re-
 tail and wholesale); Services; Finance, Real Estate
 and Insurance; Mining; and Construction:

 (5) In Ypjcst-Z YkSkct + aHjln HpctaLln Lpjct
 k

 + pj3ln Kpjct + d jt d + + E,t + Epjct

 where Skct is now college share in industry k,
 city c, and year t; and k indexes all 1-digit
 industries (when k = Manufacturing, I calculate
 college share excluding 3-digit industry j).
 Equation (5) yields estimates of seven ' s- one
 for each 1-digit industry. Once I have estimates
 of the y's, I can test whether the magnitude of
 each industry's y coefficient depends on the
 economic distance between that industry and
 manufacturing. Because 1-digit industries are
 very broad, I also repeat the analysis at the
 2-digit industry level.

 The three measures of distance that I use

 capture alternative but not mutually exclusive
 notions of economic and technological distance
 between industries. The first measure is based

 on input-output tables and tries to capture inter-
 actions between industries that arise from ex-

 changing goods and services during the
 production process. According to this metric,
 the economic distance between manufacturing
 and each of the 1-digit industries is proportional
 to the value of inputs that each industry pro-
 vides to manufacturing. For example, the indus-
 try "transportation, communication, and utilities"
 is closer to manufacturing than "finance" because
 the value of inputs from "transportation, commu-
 nication, and utilities" that are used in manufac-
 turing is larger than the value of inputs from
 "finance." One limitation of the input-output met-
 ric is that it may confound human capital spill-
 overs with pecuniary externalities. The literature
 on R&D spillovers has preferred measures of
 technological distance based on patents.24

 24 See, for example, Jaffe (1986), Jaffe et al. (1993),
 Branstetter (2001), and Jaffe et al. (2002).

 The second measure of distance tries to cap-
 ture similarities in the distribution of R&D in-
 vestment and technological expertise across
 different technical fields, as measured by the
 number of patents in each field. The U.S. Patent
 and Trademark Office has developed a highly
 elaborate classification system for technologies
 to which patented invention belong. By count-
 ing the number of patents held by an industry in
 a technological field, I can obtain a quantitative
 measure of the industry's level of expertise in
 that field (Jaffe, 1986; Branstetter, 2001). Ac-
 cording to this metric, two industries are close if
 the distribution of patents across technological
 fields is similar.

 As a third metric, I use an index based on
 industry linkages revealed by patent citations.
 Patent citations serve an important legal func-
 tion, since they delimit the scope of the property
 rights awarded by the patent. Thus, if patent B
 cites patent A, it implies that patent A repre-
 sents a piece of previously existing knowledge
 upon which patent B builds. The presumption is
 that citations are informative of links between

 patented innovations. The third index of dis-
 tance is based on the notion that if industry x
 cites industry's y patents more frequently than
 industry's z patents, x is closer to y than to z.
 Patent citations have been used by other authors
 to document spillovers.25

 Input-Output Tables.-I rank nonmanufac-
 turing industries by distance from manufactur-
 ing based on the value of the inputs that each
 industry provides to manufacturing. The value
 of inputs provided by each industry to manu-
 facturing is shown in column (2) of Appendix
 Table Al (top panel).26 The third column in
 Table Al (top panel) shows estimates of the Yk
 coefficients in equation (5). The coefficient is
 largest for Manufacturing and smallest for

 25 For example, in an influential paper, Jaffe et al. (1993)
 compare the geographic location of patent citations with
 that of the cited patents to measure the extent to which
 knowledge spillovers are geographically localized. See also
 Jaffe et al. (2002).

 26 The I-O tables are based on national data. I use the
 "Use" Table, which shows the inputs to industry production
 and the commodities that are consumed by final users. The
 Use table is the most frequently requested table because of
 its applications to the estimates of GDP. Source: www.
 bea.gov/bea/industry/iotables/prod/tablelist.cfm?anon = 394.
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 FIGURE 2. THE SPILLOVER EFFECT OF COLLEGE SHARE IN

 1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE
 (DISTANCE BASED ON INPUT-OUTPUT TABLES)

 Notes: Top panel: The figure plots the estimated coefficients
 on college share in each 1-digit industry [from Table Al,
 column (3)] on the y-axis against the rank in value of inputs,
 on the x-axis [from Table Al, column (1)]. For example,
 manufacturing has rank 1, because the value of inputs is
 highest for manufacturing. Transportation has rank 2, trade
 has rank 3, etc. The OLS fitted line is superimposed. The
 slope (standard error) of the line is -0.109 (0.042). R2 is
 0.57.

 Bottom panel: The figure plots the estimated coefficients on
 college share in each 2-digit industry group [from Table Al,
 column (3)] on the y-axis against the rank in value of inputs,
 on the x-axis [from Table Al, column (1)]. The OLS fitted
 line is superimposed. The slope (standard error) of the line
 is -0.015 (0.002). R2 is 0.85.

 Finance, Real Estate, and Insurance. Although
 the relationship between the coefficient in col-
 umn (3) and economic distance in column (2) is
 by no means monotonic, the estimated co-
 efficients do tend to decrease as we move to-

 ward industries that provide fewer inputs into
 manufacturing.

 The negative relationship between the esti-
 mated coefficient and economic distance can be

 better seen in Figure 2 (top panel), which plots
 the coefficients against the rank based on value

 of inputs. The OLS fitted line is superimposed.
 The OLS slope (standard error) is -0.109
 (0.042), and R2 is 0.54. (A similar figure is
 obtained if one plots the coefficients against the
 log value of inputs.) Figure 2 indicates that
 human capital in industries that are economi-
 cally close to manufacturing (and presumably
 interact more with manufacturing) benefits
 manufacturing plants more than human capital
 in industries that are economically far from
 manufacturing (and presumably interact less
 with manufacturing).

 This finding is based on 1-digit industries. I
 repeat the analysis using a more disaggregated
 industry definition. Instead of looking at 1-digit
 industries, I look at 2-digit industries. Every-
 thing else remains the same. As before, I rank
 industries based on value of inputs. Column (3)
 in the bottom panel of Table Al shows esti-
 mates of a model where the coefficient on col-

 lege share varies depending on the distance
 between 2-digit industries. Because there are so
 many 2-digit industries, I group them in sets of
 five. In other words, I force the coefficient on
 college share to be the same for the closest five
 industries, the next five, and so on. Note that the

 industry composition in each five-industry
 group is different for each plant. For example,
 the entry in column (3), row 1 is the coefficient
 on college share in the five 2-digit industries
 that are closest to the relevant plant.

 Estimates of the yk coefficients show a ten-
 dency to decrease as we move from close in-
 dustries to industries further away. The negative
 relationship between estimated coefficients and
 economic distance is more easily seen in Figure
 2 (bottom panel), that plots the estimated coef-
 ficients against the rank based on value of in-
 puts. The OLS fitted line is superimposed. The
 slope (standard error) of the line is -0.015
 (0.002). R2 is 0.85.

 Distribution of Patents Across Technological
 Groups.-I now repeat the analysis using a
 measure of economic distance based on the

 distribution of patents over technological fields.
 I first divide the patents into 36 technological
 fields defined in Jaffe et al. (2002, pp. 452-
 454). For each industry j, I construct the vector
 of shares of industry patents in each technolog-
 ical field Sj = (Sjl, sj2, . . Sj36). For each pair of
 industries (j, k), I calculate the uncentered cor-
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 relation coefficient between vector sj and Sk as
 follows:

 E h=36 (Sjh Skh)
 (6) Pjk - 2 36 36 2h

 V\ h=I Sjhh= I Skh

 The uncentered correlation is the angular dis-
 tance between vectors: two industries with iden-

 tical distribution of patents across technological
 fields have a correlation of one, two industries
 with orthogonal distributions of patents have a
 correlation of zero. See the Data Appendix for
 details on the patent data set.

 Column (2) in Table A2 shows the uncen-
 tered correlation coefficient p at the 1-digit in-
 dustry level (top panel) and 2-digit industry
 level (bottom panel), and column (3) shows the
 corresponding estimates of the Yk coefficients in
 equation (5).27 The relationship between the
 coefficient in column (3) and economic distance
 in column (2) is not monotonic, but the esti-
 mated coefficients do tend to decrease as we

 move toward pairs of industries with lower p.
 The negative relationship between estimated
 coefficients and economic distance is more eas-

 ily seen in Figure 3, where I plot the estimated
 coefficients against the rank based on p. In the
 top panel (1-digit industry level), the slope of
 the fitted line is -0.095 (0.048). R2 is 0.43. In
 the bottom panel (2-digit industry level), the
 slope of the fitted line is -0.016 (0.005). R2 is
 0.65.

 Patent Citations.-Finally, I repeat the anal-
 ysis using a measure of economic distance
 based on the frequency of patent citations. For
 each pair of industries (j, k), I calculate the
 frequency that a patent assigned to industry j
 cites a patent assigned to industry k.28 Column
 (2) in Table A3 shows the frequency of citations
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 FIGURE 3. THE SPILLOVER EFFECT OF COLLEGE SHARE IN
 1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE

 (DISTANCE BASED ON THE DISTRIBUTION OF PATENTS
 ACROSS TECHNOLOGICAL GROUPS)

 Notes: Top panel: The figure plots the estimated coeffi-
 cients on college share in each industry [from Table A2,
 column (3)] on the y-axis against the rank in the uncentered
 correlation coefficient based on differences in the distribu-

 tion of patents across technological groups, on the x-axis
 [from Table A2, column (1)]. For example, manufacturing
 has rank 1, because the uncentered correlation coefficient
 is highest for manufacturing. Trade has rank 2, mining
 has rank 3, etc. The OLS fitted line is superimposed. The
 slope (standard error) of the line is -0.095 (0.048). R2
 is 0.43.

 Bottom panel: The figure plots the estimated coefficients
 on college share in each industry group [from Table A2,
 column (3)] on the y-axis against the rank in the uncen-
 tered correlation coefficient based on differences in the

 distribution of patents across technological groups, on the
 x-axis [from Table A2, column (1)]. The OLS fitted line
 is superimposed. The slope (standard error) of the line is
 -0.016 (0.005). R2 is 0.65.

 27 While the 1-digit yk coefficients are the same as in
 Table Al, the 2-digits are not, because I group 2-digit
 industries in groups of five. Since this grouping depends on
 the specific measure of distance used, the groups are obvi-
 ously different in Table Al and A2.

 28 Unlike uncentered correlation, this index of distance is
 not symmetric, because the frequency that a patent assigned
 to industry j cites a patent assigned to industry k is not the
 same as the frequency that a patent assigned to k cites a
 patent assigned to j. In calculating the index, I do not
 include self-citations.

 at the 1-digit industry level (top panel) and
 2-digit industry level (bottom panel). For exam-
 ple, the first and second entry in column (2)
 show that manufacturing patents cite manufac-
 turing patents and services patents with fre-
 quency equal 74 percent and 13 percent,
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 respectively.29 Column (3) shows the corre-
 sponding estimates of the Yk coefficients.

 The relationship between estimated coeffi-
 cients and economic distance is shown in Figure
 4, where I plot the estimated coefficients against
 the rank based on frequency of citations. In the
 top panel (1-digit industry level), the slope of
 the fitted line is -0.086 (0.051). R2 is 0.35. In
 the bottom panel (2-digit industry level), the
 slope of the fitted line is -0.007 (0.004). Nei-
 ther slope is statistically different from zero. R2
 is 0.29. The relationship between spillovers and
 distance as measured by patent citations appears
 to be somewhat weaker than the relationship
 between spillovers and distance as measured by
 the uncentered correlation coefficient.

 VI. Additional Results

 The results presented in Table 3 are generally
 consistent with the notion that changes in the
 aggregate stock of human capital are associated
 with increased productivity of manufacturing
 plants. Yet, without a randomized experiment, it
 is difficult to be completely certain that the
 estimated parameters are causal. It is always
 possible that the estimates reflect, at least in
 part, the presence of citywide, time-varying pro-
 ductivity shocks correlated with S. However,
 findings in Table 3 show that the estimates of
 the spillover are robust to a wide variety of
 assumptions on technology and demand shocks.
 Moreover, results in Section V-based on three
 alternative measures of economic distance-as

 well as results in Tables 4 and 5, indicate that,
 within a city, the magnitude of the spillovers
 decline with economic distance. These results

 are consistent with the interpretation of my es-
 timates as human capital spillovers. If the doc-
 umented correlation between college share and
 productivity were completely spurious, one
 would not expect to find such a consistent pat-
 tern based on economic distance.

 29 Frequencies in the bottom panel [column (2)] are
 lower because 2-digit industries are smaller than 1-digit
 industries. For example, the first entry in the bottom panel is
 the average frequency of citations for the five 2-digit indus-
 tries that receive the most citations by the relevant 2-digit
 industry. Because entries are an average for five industries,
 they do not sum up to one.
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 FIGURE 4. THE SPILLOVER EFFECT OF COLLEGE SHARE IN

 1-DIGIT AND 2-DIGIT INDUSTRIES, BY ECONOMIC DISTANCE
 (DISTANCE BASED ON PATENT CITATIONS)

 Notes: Top panel: The figure plots the estimated coefficients
 on college share in each 1-digit industry [from Table A3,
 column (3)] on the y-axis against the rank in the frequency
 of patent citations, on the x-axis [from Table A3, column
 (1)]. For example, manufacturing has rank 1, because the
 frequency of patent citations is highest for manufacturing.
 Services has rank 2, communication has rank 3, etc. The
 OLS fitted line is superimposed. The slope (standard error)
 of the line is -0.086 (0.051). R2 is 0.35.
 Bottom panel: The figure plots the estimated coefficients on
 college share in each 2-digit industry group [from Table A3,
 column (3)] on the y-axis against the rank in frequency of
 patent citations, on the x-axis [from Table A3, column (1)].
 The OLS fitted line is superimposed. The slope (standard
 error) of the line is -0.007 (0.004). R2 is 0.29.

 In this section, I present several additional
 pieces of evidence to further investigate the
 validity of my estimates. I begin by presenting a
 specification check based on physical capital. In
 subsection B, I present estimates from a number
 of alternative specifications intended to probe
 the robustness of the results in Table 3. In

 subsection C, I experiment with an instrumental
 variable strategy. Taken together, results in this
 section lend further support to the view that the
 estimates of the spillovers are not completely
 spurious.
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 TABLE 6-THE EFFECT OF PHYSICAL CAPITAL OUTSIDE THE PLANT ON PLANT PRODUCTIVITY

 Cross section

 1982 1992 Panel

 (1) (2) (3) (4) (5)

 Model 1:

 Coefficient on In average capital 0.349 -0.150 0.012 0.007 0.007
 outside plant (0.067) (0.065) (0.017) (0.017) (0.018)

 Model 2:

 Coefficient on In average capital 1.871 -0.724 -0.005 -0.006 -0.004
 per worker outside plant (0.661) (0.404) (0.021) (0.021) (0.022)

 Establishment effects Yes Yes Yes

 State X year effects Yes
 Industry X year effects Yes

 Notes: Standard errors adjusted for clustering are in parentheses. Each entry is from a separate
 regression. The equation estimated is equation (4), where human capital S is substituted with
 a measure of physical capital. Entries in row 1 are the coefficients on the log of average
 physical capital outside the plant in a city. Entries in row 2 are the coefficients on the log of
 per worker average physical capital outside the plant in the city. All models control for capital
 in the plant and hours worked by skilled and unskilled workers in the plant. There are 40,281
 plants, observed in both 1982 and 1992.

 A. A Specification Check

 As a specification check, I estimate equation
 (4) substituting human capital with a measure of
 overall physical capital outside a plant. If my
 estimate of human capital spillovers are spuri-
 ous, or if they can be explained by agglomera-
 tion effects other than human capital
 externalities, then I may find that plants located
 in cities where the overall level of physical
 capital is high are more productive than similar
 plants located in cities where the overall level of
 physical capital is low. On the contrary, if my
 estimates are capturing only human capital ex-
 ternalities, there is no reason why physical cap-
 ital in one plant should be correlated with
 productivity in other plants.

 For each plant and city, I use two alternative
 measures of density of physical capital: the log
 of average physical capital outside the plant in
 the city and the log of per worker average
 physical capital outside the plant in the city.
 Cross-sectional estimates in Table 6 suggest
 that average capital is correlated with produc-
 tivity, although the sign is positive in 1982 and
 negative in 1992. However, when plant fixed
 effects are included the coefficient becomes in-

 significant, suggesting that plant-level heteroge-
 neity may bias cross-sectional estimates. When
 state X year effects are added [column (4)] or

 industry x year effects are added [column (5)],
 the coefficients drop to virtually zero. I con-
 clude that overall level of physical capital out-
 side the plant does not have an effect on plants'
 productivity similar to the one generated by
 human capital.

 B. Robustness Checks

 In this subsection, I investigate the robustness
 of the estimates in Table 3 to different

 assumptions.

 Regional vs. National Industries.-One of
 the assumptions of the model is that the price of
 output is constant across locations. This is prob-
 ably a reasonable assumption for many manu-
 factured goods, because they are traded on the
 national market. However, some manufactured
 goods have a more regional distribution, and the
 assumption of one national price may not be
 realistic for them.30 The concern is that the
 output price of regional industries reflects local
 production costs, and locations with higher

 30 Mark Roberts and Dylan Supina (1997) find consid-
 erable price dispersion in Census of Manufacturing data
 across a range of industries.
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 production costs also have higher college share.
 In this case, my estimates would be biased
 upward.

 I test whether the estimated spillover is
 different for regional industries and national
 industries. I define regional industries based
 on whether the average distance traveled by
 output is less than 500 (or 300) miles.31 Ex-
 amples of regional industries are: hydraulic
 cement, iron and steel products, metal scrap
 and waste tailings, ice cream and related fro-
 zen desserts, prepared feed for animals, and
 prefabricated wooden buildings. I find that the
 estimated spillover is lower for regional in-
 dustries, although the difference is not statis-
 tically significant. This finding suggests that
 unobserved differences in the cost of produc-
 tion are unlikely to introduce upper bias in my
 estimates.32

 Estimates Based on TFP.-I now turn to es-

 timates of the spillover based on a total factor
 productivity (TFP) specification. First, I esti-
 mate TFP under the assumptions that (1) tech-
 nology is Cobb-Douglas; (2) factor prices equal
 marginal products; and (3) there are constant
 return to scale to capital and labor. The labor
 elasticity is measured at the plant level as the
 plant-specific ratio of total wages over total
 output. Having estimated TFP, I then regress
 TFP on college share in other industries. The
 advantage of the TFP specification relative to
 the specifications in Table 3 is that it does not
 require estimating the production function, and
 therefore it does not rely on the assumption that
 capital and labor inputs are exogenous. The

 31 The information on distance is from the Appendix in
 Leonard W. Weiss (1972). Distance varies between 52 and
 1337, with a mean of 498.

 32 The parameters on external college share and on ex-
 ternal college share X the regional dummy are, respectively,
 1.15 (0.39) and -0.52 (0.45) in Cobb-Douglas models that
 include establishment effects and industry X state x year
 effects, when the regional dummy is equal to one if the plant
 belongs to an industry where the average distance traveled
 by output is less than 500 miles. When the regional dummy
 is equal to 1 if the plant belongs to an industry where the
 distance traveled by output is less than 300 miles, the
 corresponding parameters are 0.91 (0.21) and -1.31 (0.92).
 Translog models yield similar estimates. One possible ex-
 planation for the fact the coefficient is lower for regional
 industries is that regional industries are mostly low tech, and
 low-tech industries seem to enjoy lower spillovers.

 TABLE 7-LONGITUDINAL ESTIMATES OF HUMAN CAPITAL
 SPILLOVERS BASED ON TFP

 (1) (2) (3) (4)

 College share in other 0.461 0.255 0.636 0.693
 industries (0.245) (0.241) (0.295) (0.311)

 Establishment effects Yes Yes Yes Yes

 Industry x year Yes
 effects

 State X year effects Yes
 Industry X state X Yes

 year

 Notes: Standard errors adjusted for clustering are in paren-
 theses. Estimates are obtained as follows. First TPF is

 estimated under the assumptions that (1) technology is
 Cobb-Douglas; (2) factor prices equal marginal products;
 (3) there are constant returns to scale. The labor elasticity is
 measured at the plant level as the ratio of total wages over
 total output. The capital elasticity is one minus the labor
 elasticity. Second, TFP is regressed on college share in
 other industries. Each column is a separate regression.
 There are 40,281 plants, observed in both 1982 and 1992.

 disadvantage is that estimates of TFP rely on the
 assumption that factor prices are paid their mar-
 ginal product, and that there are constant return
 to scale.33

 Estimates in Table 7 show that the estimated

 spillover varies between 0.255 and 0.693. The
 most robust specification, in column (4), is not
 significantly different from the corresponding
 specification in Table 3, although the standard
 error is larger.

 More Robustness Checks.-I conclude this

 subsection by presenting estimates from a num-
 ber of alternative specifications intended to
 probe the robustness of the results in Table
 3. The first row in Table 8 reproduces the esti-
 mate for the base specification in Table 3, col-
 umn (1), row 1. The remaining rows present
 estimates of variants of the base model. The

 second row reports the estimate from a specifi-
 cation similar to the base specification, where
 the dependent variable is value of shipments,
 not value added. The coefficient increases to
 0.86.

 33 Under constant returns to scale to K and L, the capital
 elasticity is simply one minus the labor elasticity. This
 assumption is useful because, while I observe the capital
 stock, I do not observe capital elasticity or the rental price
 of capital at the plant level.
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 TABLE 8-ROBUSTNESS CHECKS

 Coefficient on college share
 in other industries

 (1) Base specification 0.743
 (0.183)

 (2) Shipments 0.866
 (0.198)

 (3) Number of colleges 0.715
 (0.184)

 (4) Number of college degrees awarded 0.747
 (0.188)

 (5) Number of colleges + degrees awarded 0.750
 (0.189)

 (6) Drop ASM plants 0.860
 (0.280)

 (7) Drop computer plants 0.723
 (0.175)

 (8) Weighted regression 0.694
 (0.202)

 (9) Small plants (1-10 workers) 0.692
 (0.259)

 (10) Medium plants (11-50 workers) 0.816
 (0.206)

 (11) Large plants (51 + workers) 0.755
 (0.319)

 (12) Coefficient on labor inputs vary across cities, time 0.501
 (0.202)

 (13) City density 0.731
 (0.187)

 (14) City pop. + other city characteristics 0.703
 (0.188)

 (15) Single-unit plants 0.919
 (0.178)

 (16) Multiunit plants 0.428
 (0.323)

 Notes: Standard errors adjusted for clustering are in parentheses. Each entry is a separate
 regression.

 (1) The base case is from Table 3, column (1).
 (2) The dependent variable is value of shipments.
 (3) Model controls for number of colleges in city.
 (4) Model controls for number of college degrees awarded.
 (5) Model controls for number of colleges and number of degrees.
 (6) Sample does not include plants in Annual Survey of Manufacturers.
 (7) Sample does not include computer and computer accessories plants.
 (8) Weights are based on the distribution of plant size in the 1982 population.
 (9) Sample includes only plants with ten workers or less.
 (10) Sample includes only plants with 11-50 workers.
 (11) Sample includes only plants with more than 50 workers.
 (12) The coefficient on skilled and unskilled labor can vary across cities and over time.
 (13) Model controls for city density.
 (14) Model controls for population, percent unemployed, black, immigrant, and female.
 (15) Sample includes only single-unit plants.
 (16) Sample includes only multiunit plants.

 One concern is that college share is picking versities is correlated with college share. To
 up not only human capital spillovers, but also investigate this possibility, I have reestimated
 university spillovers, since the density of uni- my models controlling for a number of colleges
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 and universities in each city.34 Variation in the
 number of institutions between 1982 and 1992

 is limited, so the results in row 3 are quite similar
 to the base-case estimates. I have also reestimated

 my models controlling for the total number of
 college degrees awarded (row 4) and for both the
 number of universities and the number of degrees
 awarded (row 5). My estimates are not very sen-
 sitive to these additional controls.35

 A limitation of the data is that capital stock is
 imputed for plants that are not part of the An-
 nual Survey of Manufacturers in 1982. This is a
 concern, because it could imply that my models
 do not adequately control for capital stock. To
 address this concern, I have reestimated my
 models dropping ASM plants. Estimates in row
 6 based on non-ASM plants are similar to my
 main estimates, indicating that my results are
 not very sensitive to the imputation.

 A second data limitation is that output in the
 computer industry is not easily measured. The
 Bureau of Labor Statistics (BLS) output deflator
 use a hedonic approach and shows a steep fall in
 recent years. In row 7, I show that when I
 reestimate my models excluding plants belong-
 ing to the computer industry (electronic com-
 puters, SIC 3571; computer terminals, SIC 3572;
 computer peripheral equipment, SIC 3577), my
 estimates do not change significantly.

 In Section III, I pointed out that results in this
 paper are based on a selected sample of plants
 that are observed both in 1982 and 1992. Plants

 in the selected sample are larger than plants in
 the population. In row 8, I reweight the sample
 to make the plant size distribution look like the
 distribution in the 1982 population. I assign
 weights based on plant size: smaller plants re-
 ceive more weight than larger plants.3 After the
 reweighting, both plant size and other observ-
 able characteristics of plants are similar to those

 34 Data on colleges and universities are from CASPAR,
 which is made available by the NSF.

 35 Including additional controls has little effect on the
 coefficients. For example, estimating the model in row 5
 conditioning on industry X year effects, state X year ef-
 fects, or industry X state X year effects yields, respectively,
 0.504 (0.197), 0.721 (0.236), 0.755 (0.240).

 36 divide the sample into ten groups, based on the
 number of workers: less than ten, between ten and 20,
 20-30, etc. I assign a weight to each plant in the longitu-
 dinal sample based on the frequency of that plant's group in
 the 1982 Census of Manufacturers population.

 of the population in 1982. The coefficient from
 the weighted regression is 0.694 (row 8).37 In
 the next three rows, I run separate regressions
 based on plant size. (These regressions are not
 weighted.) No clear pattern emerges. For small
 plants (less than ten workers), the coefficient is
 0.69. It increases to 0.81 for medium-sized plants
 (between 11 and 50 workers), and decreases to
 0.75 for large plants (above 50 workers).

 Next, I try to address the concern that
 changes in workers' unobserved ability are cor-
 related with changes in college share. It is in
 theory possible that workers of higher ability
 move to cities that experience larger increases
 in college share. If this is the case, the estimated
 spillover would reflect higher ability of edu-
 cated workers in the plant, not higher produc-
 tivity. By imposing some additional
 assumptions, it is possible to account for work-
 ers' heterogeneity in models where the coeffi-
 cients on skilled and unskilled labor are allowed

 to vary across cities and time. To see this,
 assume that the production function is Ypjct =
 APJCtH%~a / L* ILK3' where H%/( and are Apj c p jLctpj c t, where Hct and Lpjct are
 the true but unobserved skilled and unskilled

 labor inputs, respectively. Unlike equation (4),
 here acH, aL, and , are assumed to be constant
 across industries. Assume that the true labor

 inputs are equal to hours worked inflated by an
 ability coefficient that can vary across cities and
 over time: H* = HJc, where H is hours pjct pjcts
 worked (which are observed), and OHct is aver-
 age ability of skilled workers in city c at time t
 (unobserved). A larger Olt implies higher abil-
 ity. Similarly, Lpjc = LLCt, where OLt is aver-
 age ability of unskilled workers. When
 estimating a production function that includes H
 and L (not H* and L*), the concern is that
 changes in unobserved ability, OHct or OLct are
 correlated with changes in S-jct. The production
 function becomes In Ypicst = yS-jct +

 37 To further investigate the issue of sample selection, I
 have also tested whether the probability that a plant exists in
 1982 but not in 1992 is correlated with changes in the level
 of human capital in a city, and I found little correlation.
 Specifically, I divide the cities in the sample into four
 quartiles, according to the change in college share between
 1982 and 1992. The average probability that a plant exists in
 1982 and not in 1992 for the first quartile, which is the
 group of cities with the smallest increase in college share is
 0.511. The corresponding figures for the second, third, and
 fourth quartile are, respectively, 0.515, 0.512, and 0.544.
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 (aHOHct)ln Hpjct + (aLOt)ln pjct + 3 In
 Kpjct + dp + djt + ds + Et + Epjct. Under these
 assumptions, one way to account for worker
 heterogeneity is to estimate models where the
 coefficients on skilled and unskilled labor vary
 by city and over time:

 (7) In Ypjcst = yS-jct + aHctln Hpjct + aL tln Lpjct

 + + In Kpjct + dp + djt + dst + Ect + Epjct

 where aO = a HHct and a' = aLOLc.
 Note that one can think of the Os not only as

 unobserved ability, but also as unobserved
 skill-biased, city-specific technological
 shocks. In this case, one can interpret H* and
 L* as effective labor inputs, i.e., hours
 worked by skilled and unskilled workers in-
 flated by a technology coefficient that allows
 workers in a given skill group to be more
 productive in some cities than in other cities.
 Row 12 reports an estimate of equation (7).
 The coefficient is 0.50, lower than the esti-
 mate of the more restrictive model where the
 coefficients on skilled and unskilled labor do

 not vary across cities, but still positive.38
 The model in row 13 controls for city density.

 The coefficient of interest does not change sig-
 nificantly. Including population, unemployment
 rate, percent black, percent immigrant, and per-
 cent female also has little effect (row 14).

 As a last specification check, in the last two
 rows, I test whether the magnitude of the esti-
 mated spillover varies by multiunit status. Mul-
 tiunit establishments are plants that are part of
 larger firms with establishments in more than
 one location. Vernon Henderson (2001) argues
 that single-unit plants should be more sensitive
 to the characteristics of their local environment

 than plants that belong to large firms with es-
 tablishments in several locations. According to
 this view, plants that belong to multiestablish-
 ment firms depend more on internal-firm net-

 38 This finding is consistent with my previous work that
 uses longitudinal worker-level data to address the issue of
 unobserved worker quality (Moretti, 2004).

 39 One reason why it is important to control for popula-
 tion is that larger cities may make firms more productive
 because they allow for more subcontracting. If return to
 specialization are important, it is in theory possible that
 plants in larger cities are more productive.

 works and therefore are more insulated from
 local external environments than single-unit
 plants. For example, while many of the factors
 that affect the productivity of a General Motors'
 plant located in St. Louis are probably deter-
 mined in the General Motors' headquarters in
 Detroit, all the factors that affect the productiv-
 ity of a single-unit plant in St. Louis are deter-
 mined in St. Louis. Spillovers should therefore
 be larger for single-unit plants than multiunit
 plants. I find that the coefficient on college
 share is 0.91 (0.17) for single-unit plants and
 only 0.42 (0.32) for multiunit plants.

 C. Instrumental Variable Estimates

 In this subsection I try to further investigate
 the validity of my estimates by using an instru-
 mental variable approach. A valid instrument is
 correlated with changes in S in other industries
 and is orthogonal to unobserved productivity
 shocks. I propose an instrument based on large
 plant openings. Specifically, the instrumental
 variable is the fraction of large plant openings
 among all the plant openings in a city excluding
 the relevant 3-digit industry. Large plant open-
 ings are defined as plants that exist in 1992 and
 did not exist in 1982 and that have 1,000 or
 more employees (in some models, I try 500+).
 Columns (1) and (2) in Table 9 show the num-
 ber of new plants in 1992 and the total employ-
 ment in these plants, by size. Although large
 plants are only a small fraction of new plants,
 they account for 18 percent of employment gen-
 erated by new plants.

 Large plants have a higher share of skilled
 workers. The correlation between total employ-
 ment and share of nonproduction workers at the
 plant level is 0.09. Openings of large plants
 appear to be an important determinant of
 changes in the aggregate education level of
 manufacturing workers. Column (3) in Table
 9 reports the correlation between the fraction of
 new plants in a given size group among all new
 plants in a city (excluding the relevant 3-digit
 industry) and the 1982-1992 change in manu-
 facturing college share in the city (excluding the
 relevant 3-digit industry). This correlation is
 calculated for the sample of 40,281 plants that is
 used in all the models in this paper. Entries in
 column (3) suggest that plant openings have a
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 TABLE 9-THE SIZE DISTRIBUTION OF NEW PLANTS IN 1992 AND THEIR IMPACT ON CHANGES
 IN THE AGGREGATE COLLEGE SHARE

 Correlation with

 changes in
 Number of new Total college share in
 plants in 1992 employment other industries Coefficient
 (1) (2) (3) (4)

 1-10 workers 144,645 483,515 0.02 0.013
 (0.011)

 11-100 workers 65,347 2,026,164 -0.07 -0.054
 (0.012)

 101-500 workers 9,278 1,797,210 0.05 0.102
 (0.039)

 501-1,000 workers 773 522,462 0.13 1.329
 (0.189)

 1,000+ workers 413 969,952 0.19 2.249
 (0.325)

 Notes: Entries in columns (1) and (2) refer to all the plants in the LRD that exist in 1992 but
 did not exist in 1982. For columns (3) and (4) the fraction of new plants in a given size group
 among all new plants in a city (excluding the relevant 3-digit industry) was assigned to each
 of the plants in the sample of 40,281 plants used for all the regressions in this paper. Column
 (3) reports the correlation between the fraction of new plants in a given size group among all
 new plants in a city in 1992 (excluding the relevant 3-digit industry) and the 1982-1992
 change in manufacturing college share in the city (excluding the relevant 3-digit industry) in
 the sample of 40,281 plants. Column (4) reports the coefficient on the fraction of new plants
 in a given size group among all new plants in a city (excluding the relevant 3-digit industry)
 in a regression of 1982-1992 changes in manufacturing college share in a city (excluding the
 relevant 3-digit industry) on the fraction of new plants in a given size group among all new
 plants in a city (excluding the relevant 3-digit industry) in the sample of 40,281 plants.

 differential impact on aggregate human capital
 depending on the size of the new plant. While
 the fraction of small and medium-sized plants is
 not positively correlated with college share in
 other industries, the fraction of plants with at
 least 500 workers and the fraction of plants with
 at least 1,000 workers are positively correlated
 with college share in other industries.40 Column

 40 The ten cities with the largest fraction of new plants
 with at least 1,000 workers are: Lafayette, IN; Pine Bluff,
 AR; Bloomington, IL; Trenton, NJ; Wilmington, DE;
 Waco, TX; Waterloo-Cedar Falls, IA; Racine, WI; Flint,
 MI. The ten cities with the smallest fraction of new plants
 with at least 1,000 workers are: Yakima, WA; Omaha, NE;
 New Bedford, MA; Nashville, TN; Duluth, MN; Daytona
 Beach, FL; Monroe, AL; Utica-Rome, NY; Stockton, CA.
 Examples of cities with a fraction of new plants that is close
 to the sample average are: Toledo, OH; El Paso, TX; Rock-
 ford, IL; Akron, OH. In the following five Census divisions
 the fraction of large plant openings is above average: New
 England, Middle Atlantic, East North Central, West North
 Central, South Atlantic. In the following four Census divi-
 sions the fraction of large plant openings is below average:
 East South Central, West South Central, Mountain, Pacific.

 (4) reports the corresponding regression
 coefficients.41

 Is the fraction of new large plants a valid
 instrument? The instrument is valid if the size

 distribution of new plants in a city in industries
 other than the relevant 3-digit industry is or-
 thogonal to the productivity changes in the rel-
 evant plant. Note that the instrument is based on
 openings outside the plant's industry. The in-
 strument is not valid if changes in unobserved
 determinants of plant productivity are corre-
 lated with the size distribution of new plants
 outside the plant's industry.

 To investigate the validity of the exclusion
 restriction, I regress the instrument on 1982

 41 Specifically, column (4) reports the coefficient on the
 fraction of new plants in a given size group among all new
 plants in a city (excluding the relevant 3-digit industry) in a
 regression of 1982-1992 changes in manufacturing college
 share in a city (excluding the relevant 3-digit industry) on
 fraction of new plants in a given size group among all new
 plants in a city (excluding the relevant 3-digit industry) in
 the sample of 40,281 plants.
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 TFP. Finding that the instrument is correlated
 with the 1982 level of TFP would cast doubt

 on the validity of the instrument, since the
 level of productivity in 1982 and the 1982-
 1992 changes in productivity could be corre-
 lated. The coefficient is 0.030 (0.026) and not
 statistically significant. I also regress the in-
 strument on the number of employees in the
 relevant plant in 1982 and on the 1982-1992
 change in the number of employees in the
 relevant plant. The concern is that large plant
 openings may occur close to other large
 plants (or in areas where plant size is grow-
 ing), and, at the same time, plants of different
 size may experience different trends in pro-
 ductivity. If both these facts were true, they
 would invalidate the instrument. The coeffi-

 cients on 1982 plant size and on the 1982-
 1992 changes in plant size are, respectively,
 0.123 (0.101) and 0.897 (0.941).

 Another possible concern is that the fraction
 of large plant openings is higher in areas that
 experience many openings of any size. This
 could be a problem if areas that experience a
 large number of openings enjoy positive pro-
 ductivity shocks that make them particularly
 attractive (for example: the opening of a port
 or an airport). To assess this possibility, I
 regress the instrument on the absolute number
 of new openings, and the per capita number of
 new openings. Finding that the fraction of
 large plant openings is higher in areas that ex-
 perience a large number of openings would cast
 doubt on the validity of the instrument. The
 coefficient on the absolute number of new open-
 ings is -1.18 (0.26); the coefficient on the
 absolute number of new openings normalized
 by 1982 city population is -0.06 (0.02). This
 suggests that the fraction of new large plants is
 higher in cities that experience fewer openings
 of any size.

 I also regress the instrument on the average
 1982 wage in the relevant plant. The coefficient
 is 0.102 (0.021). This last result is problematic,
 because it indicates that the fraction of new

 large plants outside the relevant industry is pos-
 itively correlated with the level of wages in
 1982. If the level of wages in 1982 is correlated
 with the 1982-1992 change in productivity, this
 would indicate that the instrument is not

 exogenous.

 Table 10 reports instrumental variable esti-

 mates.42 Two-stage least-squares (2SLS) esti-
 mates in rows 1 and 3 seem to be generally
 consistent with the corresponding OLS esti-
 mates, although standard errors are large and
 preclude definitive conclusions. The first-stage
 coefficients in row 2 are between 2.22 and 3.34.

 To help in interpreting the first-stage estimates,
 consider that the instrument has a mean (stan-
 dard deviation) of 0.0025 (0.0024). For the av-
 erage city-industry, the fraction of large plant
 openings accounts for a 0.005-0.008-percentage-
 point increase in the aggregate college share
 outside the relevant industry, or about 11-18
 percent of the typical increase in college share
 experienced over a ten-year period.43

 VII. Human Capital Spillovers and Wages

 The most robust estimates of the spillover
 indicate that, on average, a one-percentage-
 point increase in city college share is associated
 with a 0.5-0.7-percent increase in productivity.
 (The average yearly increase in college share is
 0.2 percent.) Is this a plausible magnitude? One
 way to assess the plausibility of the estimated
 effect is to compare it with the difference in
 labor costs between cities with high and low
 human capital. In equilibrium, if firms are really
 more productive in cities with high levels of
 human capital, production costs should also be
 higher. Otherwise, firms would relocate from
 cities with low human capital to cities with high
 human capital (see Section I). The difference in
 labor costs between cities with high and low
 human capital is therefore a useful benchmark
 against which to compare the estimated effect of
 human capital spillovers on productivity. Find-
 ing that the productivity differences between
 cities with high human capital and low human

 42 Because the instrument affects changes in aggregate
 college share, models in Table 10 estimate equation (4) in
 differences. Specifically: A In ypcs = yAS-jc + aHln
 AHpjc + aLjA In Lpjc + jA In Kpjc + dij + Epjc, where A
 represents the 1982-1992 change. Column (1) is equivalent
 to column (2) in Table 3, column (2) is equivalent to column
 (3) in Table 3, etc.

 43 Alternatively, compare a city-industry at the 25 per-
 centile with a city-industry at the 75 percentile in terms of
 fraction of large plant openings. Based on the first-stage
 estimates, the latter has a 0.005-0.008-percentage-point
 increase in the aggregate college share more than the former.

 681 VOL. 94 NO. 3

This content downloaded from 128.135.12.127 on Thu, 12 May 2016 01:31:03 UTC
All use subject to http://about.jstor.org/terms



 THE AMERICAN ECONOMIC REVIEW

 TABLE 10-INSTRUMENTAL VARIABLE ESTIMATES OF HUMAN CAPITAL SPILLOVERS

 Cobb-Douglas Translog

 (1) (2) (3) (4) (5) (6) (7) (8)

 (1) IV is Based on Fraction of New Plants with 1,000 or More Workers
 (1) College share in other industries 0.84 1.03 1.28 1.21 0.95 0.87 1.29 1.15

 (0.66) (0.62) (0.57) (0.57) (0.62) (0.66) (0.56) (0.57)
 (2) First stage 2.23 3.39 3.24 3.23 3.37 2.22 3.23 3.21

 (0.29) (0.28) (0.30) (0.29) (0.29) (0.28) (0.29) (0.29)

 (2) IV is Based on Fraction of New Plants with 500 or More Workers
 (3) College share in other industries 0.85 0.87 1.59 1.43 0.88 0.79 1.59 1.32

 (0.70) (0.72) (0.64) (0.65) (0.71) (0.69) (0.64) (0.65)
 (4) First stage 1.15 1.57 1.55 1.54 1.56 1.15 1.55 1.53

 (0.15) (0.13) (0.15) (0.15) (0.15) (0.14) (0.15) (0.15)

 Industry effects Yes Yes
 State effects Yes Yes

 Industry X state Yes Yes Yes Yes
 Technology varies by industry Yes Yes

 Notes: Standard errors adjusted for clustering are in parentheses. The equation estimated is equation (4) is in differences.
 Specifically: A In Ypj,, = yAS-jc + aHin AHpjc + aLjA In L+jc + +A In Kjc + djs + Epjc. [Column (1) is equivalent to column
 (2) in Table 3; column (2) is equivalent to column (3) in Table 3; etc.] The instrumental variable is the fraction of large plant
 openings among all the plant openings in a city excluding the relevant 3-digit industry. In the top panel, large plant openings
 are defined as openings of plants with 1,000 workers or more. There are 413 such openings, and they account for 18 percent
 of employment in new plants. In the bottom panel, large plant openings are defined as plant openings with 500 workers or
 more. There are 1,186 such openings, and they account for 26 percent of employment in new plants. The dependent variable
 in the first stage is the college share in other industries. Each entry is a separate regression. There are 40,281 plants in the
 sample, observed in both 1982 and 1992.

 capital are larger than the differences in labor
 costs (adjusted for the fraction of labor cost to
 total costs), would suggest that the estimated
 productivity gains from spillovers are too large,
 and would cast doubt on the findings in Section
 IV.44

 Manufacturing wages are indeed higher in
 cities where the number of college graduates is
 high, even after controlling for individual
 schooling. Compare a city with a large stock of
 skilled workers like Seattle, WA, with a city
 with a much smaller stock of skilled workers,
 like El Paso, TX. The share of college graduates
 in the Seattle labor force is 0.31, almost double
 the share of college graduates in El Paso, 0.16.
 After controlling for individual schooling, and

 44I am abstracting from the cost of capital because it
 does not vary much across cities. If a substantial part of
 production costs of manufacturing firms come from land
 prices, and if cities with higher college share have more
 expensive land, then it would be possible to find that pro-
 ductivity differences between cities with high human capital
 and low human capital are larger than the differences in
 labor costs.

 other workers' characteristics, average manu-
 facturing wages in Seattle are 20 percent higher
 than in El Paso. This implies that an extra
 percentage point in college share is associated
 with 1.3 percentage points in higher wages,
 after controlling for individual observables. As
 it turns out, the corresponding figure for all U.S.
 cities is 1.1, not very different.

 In equilibrium, this wage difference must re-
 flect productivity differences. Because manu-
 facturing firms produce goods that are traded on
 the national market, if workers were not more
 productive in high-wage cities, manufacturing

 45 This figure comes from an individual-level OLS re-
 gression of log wage on city college share, a vector of
 individual characteristics including education, sex, race,
 Hispanic origin, U.S. citizenship, a quadratic term in work
 experience, AFQT score, a vector of family background
 characteristics, and city and year fixed effects. The coeffi-
 cient (standard error) on college share is 1.1 (0.21). The
 sample includes all manufacturing workers in the NLSY.
 Instrumental variable estimates and panel data estimates
 that control for individual fixed effects yield similar coef-
 ficients. Estimates based on Census data yield similar re-
 sults. See Moretti (2004) for details.
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 firms would leave and relocate to low-wage
 cities. Specifically, we should observe that
 the productivity increase associated with a one-
 percentage-point increase in college share is
 roughly 1.1 * 0.7 - 0.75, where 0.7 is the share
 of output that is typically assumed to go to labor
 (the remaining 0.3 goes to capital). In other
 words, this back-of-the-envelope calculation
 suggests that, in equilibrium, a regression of log
 output on college share (holding constant other
 inputs) should yield a coefficient not very far
 from 0.75.46

 My most robust estimates in Table 3 place
 the spillover effect at around 0.5-0.7. I con-
 clude that the estimated productivity differ-
 ences between cities with high and low levels
 of human capital are consistent with differ-
 ences in labor costs that are typically ob-
 served between cities with high and low level
 of human capital.

 VIII. Conclusion

 Economists have long speculated that human
 capital may generate significant spillovers. Lu-
 cas (1988), among others, argues that human
 capital externalities are large enough to explain
 differences between poor and rich countries in
 long-run growth rates. Yet, despite significant
 policy implications, systematic empirical evi-
 dence on the actual magnitude of externalities is
 just beginning to emerge. Previous work has
 focused on differences in education and wages
 across metropolitan areas.

 In this paper, I take a more direct approach by
 focusing on the productivity of manufacturing
 establishments. I start from a very simple ob-
 servation: if human capital spillovers actually
 exist, then we should observe that plants in
 cities with a large stock of human capital are
 more productive than otherwise similar plants
 in cities with a smaller stock of human capital.
 My findings suggest that, after controlling for a

 46 To see this more formally, consider the simplest pos-
 sible technology: y = AL"Kl -. It is easy to see that unit
 costs are In c = -ln A + In w + (1 - a)ln r + constant.

 In Roback's model, the price of capital is constant across
 cities. If in equilibrium unit costs are constant across cities,
 this equation says that any increase in A needs to be offset
 by a similar increase in a times wages.

 plant's own level of human capital, plants lo-
 cated in cities where the fraction of college
 graduates grew faster experienced large in-
 creases in productivity than similar plants in
 cities where the fraction of college graduates
 grew more slowly.

 Interestingly, the estimated productivity dif-
 ferences between cities with high and low levels
 of human capital are consistent with differences
 in manufacturing wages that are typically ob-
 served between cities with high and low levels
 of human capital. Consistent with a model that
 includes both standard general-equilibrium
 forces and spillovers, the productivity gains
 generated by human capital spillover appear to
 be offset by increased labor costs.

 Although I control for permanent plant char-
 acteristics and state and industry time-varying
 productivity shocks, I cannot completely rule
 out the possibility that unobserved city hetero-
 geneity may explain part of the estimated effect.
 However, several pieces of evidence lend cred-
 ibility to the conclusion that the estimated effect
 is not completely spurious.

 First, the estimated coefficient is remarkably
 robust across specifications. Different assump-
 tions on technology, omitted variables, and
 variable definitions all yield similar results.

 Second, aggregate human capital in the high-
 tech sector of the city matters more for high-
 tech plants than aggregate human capital in the
 low-tech sector of the city; and aggregate hu-
 man capital in the low-tech sector matters more
 for low-tech plants than aggregate human cap-
 ital in the high-tech sector. More importantly,
 when I use three direct measures of economic
 distance, I find that, within a city, manufactur-
 ing plants benefit more from human capital in
 industries that are geographically and econom-
 ically close to manufacturing than from human
 capital in industries that are geographically
 close but economically far. This result supports
 the view that spillovers are related to the
 amount of interactions between workers in dif-
 ferent industries.

 Third, unlike density of human capital, den-
 sity of physical capital outside a plant has no
 effect on the plant productivity. This indicates
 that what I am estimating is not simply an
 agglomeration effect generated by density of
 economic activity. Finally, an instrumental vari-
 able strategy based on the number of large plant
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 openings in the relevant city but outside the capital spillovers, one important direction for
 relevant 3-digit industry yields estimates that are future research should be the investigation of
 generally consistent with OLS estimates. the exact mechanisms through which spillovers

 Having established the existence of human arise.

 DATA APPENDIX

 CENSUS OF MANUFACTURERS: Plant-level data on output, capital, hours worked, industry,
 and metropolitan area are from the Census of Manufacturers. The Census of Manufacturers covers
 the universe of manufacturing plants with one or more employees. Since Standard Metropolitan
 Statistical Area (SMSA) codes in different years are based on different definitions of metropolitan
 areas, I correct the 1992 SMSA codes to be consistent with the 1982 definition. I delete all the
 SMSAs that are new to the 1992 sample and were not part of another SMSA in 1982.47 Because the
 metropolitan area definition was changed after 1982, I also redefine 1992 SMSAs to match the 1982
 boundaries. I do this in two steps. First, I make the definition of counties consistent over time because
 some counties have changed their boundaries during the 1980's and there are coding errors in the
 Census of Manufacturers county codes. To do so, I use a program written by Randy Becker provided
 by the CES. Only five urban counties are affected (they are located in Georgia, Virginia, Arizona,
 New Mexico, and California). To make sure that all county changes have been captured, I use the
 County Group Equivalency files. I find seven more changes in Virginia counties that are not included
 in the CES program. Once I have a county code that is consistent over time, I use the County Group
 Equivalency files to identify SMSA boundary changes in the 1992 Census of Manufacturers. In 1982
 and 1992 263 SMSAs are identified.

 I assign each plant to an industry-city cell based on its 3-digit SIC code and SMSA code. Although
 4-digit SIC codes are available, I choose 3-digit industries to maximize consistency with the Census
 of Population industry classification. For production workers, both the number of workers and the
 number of hours worked is reported in the Census of Manufacturers. For nonproduction workers, the
 number of workers is known, but the number of hours worked is not reported. The number of hours
 of nonproduction workers is imputed by assuming that production and nonproduction workers in the
 same plant work the same number of hours per capita.

 CENSUS OF POPULATION: Data on the skill level of workers in each plant and on the share
 of college graduates outside the industry come from the 1980 and 1990 Censuses of Population. To
 maximize sample size, I use the 5-percent version of the Public Use MicrodataSample (PUMS). The
 Census industry classification is not the SIC one, but has a similar level of detail as the 3-digit SIC
 codes. Using the name of the industry, I match the Census industry classification to the SIC one.

 As in the Census of Manufacturers, metropolitan area definitions are not consistent across years.
 To make the 1990 SMSA codes consistent with the 1980 definition, I adopt a procedure consistent
 with the one described above for the Census of Manufacturers.48 Years of education are assigned to

 47 I also delete Dayton because it was combined with Springfield, OH, and there is not a good way to separate them and/or
 to define either one so that it resembles its form in 1982.

 48 Specifically, I assign individuals a metropolitan area on the basis of two geographical identifiers, Public Use Microdata
 Areas (PUMAs) and metropolitan area codes. The finest geographic units identified in the 5-percent samples are PUMAs,
 which are arbitrary geographic divisions that contain no less than 100,000 people each. Most individuals who live in
 metropolitan areas are also assigned a metropolitan area identifier. However, some PUMAs straddle the boundary of two or
 more SMSAs and in these "mixed" PUMAs an SMSA code is not assigned. These "mixed" PUMAs are assigned a SMSA
 code on the basis of the County Group Equivalency files. The methodology used to assign SMSA codes and to match MSA
 across Censuses is identical to the one in Moretti (2004). If over 50 percent of the PUMA population is attributable to a single
 MSA, I then assign all individuals in that PUMA to the majority MSA. Since the MSA definition was changed after the 1980
 Census, I redefine 1990 SMSAs to match the 1980 boundaries. The County Group Equivalency files are used to identify
 PUMAs that contain the affected counties in the 1990 Census. If the counties in question comprise more than half of the
 PUMAs population, all respondents are assigned to the pertinent SMSA. If more than 10 percent of a SMSAs 1990 population
 is affected by the boundary changes and is unrecoverable from the County Equivalency files, I drop the city from the analysis.
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 the education codes used in 1990 Census following Table 1 in Kominsky and Siegel (1994). Since
 1982 and 1992 are not Census of Population years, linear interpolation is used to estimate the college
 share for 1982 and 1992.49

 MATCHING CENSUS OF MANUFACTURERS TO CENSUS OF POPULATION: Plant-
 level data from the Census of Manufacturers are matched with Census of Population data on
 workers' education by industry and city. I assign each plant in the Census of Manufacturers and each
 worker in the Census of Population to a city-industry cell based on the metropolitan area code and
 a 3-digit industry definition. To minimize the amount of measurement error, I exclude all industry-
 city cells with less than ten workers. There are a total of 3,441 cells. The average number of workers
 in a cell is 546 in 1980 and 387 in 1990. About 18 percent of the cells contain only one plant. (The
 fraction of cells that include only one plant is calculated for the balanced panel used for regressions,
 not for the population of plants.) The median cell in 1992 includes 100 workers and 4 plants.50

 The Census of Manufacturers has 381,773 plants in 1982 and 348,385 in 1992. To build the
 balanced panel used in this paper, I first exclude all plants that do not appear both in 1982 and 1992.
 A total of 161,321 plants exist in both years. I then delete plants for which some of the relevant
 variables are missing in at least one year. I also exclude from the sample all plants that have capital
 or production hours or nonproduction hours equal zero. With Cobb-Douglas or Translog production
 functions, output is zero for any plants where one of the inputs is zero. Finally, I delete industry-city
 cells with less than ten workers from the Census of Population. The resulting balanced panel sample
 has 40,281 plants in 1982 and 1992. This sample covers approximately 24 percent of average annual
 manufacturing employment over the period from 1982 to 1992. Large plants are overrepresented in
 the worker-firm matched sample. For example, the average number of hours worked by all plants in
 1982 is 105.2, less than half than the average number of hours worked by plants in the matched
 sample. Similarly, output, value added, value of capital, and wages are lower in the population than
 in my sample. The average output, value added, capital, and wages in the population of plants in
 1982 are, respectively: 9,018; 3,828; 3,336; 12.2. However, the nonrepresentativeness of the
 worker-firm matched sample does not seem to bias the estimates in any significant way (see Section
 VI, subsection B).

 In theory, the Worker Establishment Characteristics Database (WECD) could have been used
 instead of the sample used here. WECD matches the Census of Manufacturers to the Census of
 Population using a more precise algorithm that requires eliminating from the sample all observations
 located in cells with more than one plant (Hellerstein et al., 1999). The main reason why I do not
 use WECD is that it is available only for 1992 and does not allow for a longitudinal analysis.

 PLANT-LEVEL WAGE EQUATIONS: In order to assess the quality of the match between
 workers and plants, I have estimated plant-level wage equations. Although the focus of this paper is
 not on wages, plant-level wage equations provide an indirect test of the quality of the matching. If
 the matching is correct and measurement error is not too large, one would expect wage equation
 coefficients to be close to the ones usually found in the wage-equation literature.51 Data on wages,
 from the Census of Manufacturers, are plant averages obtained by dividing the total wage bill by the

 Dayton and Springfield, Ohio, are the only such cities. Two hundred eighty-two SMSAs are identified in 1980 and 1990. The
 computer code for this assignment is available on request.

 49 An alternative would have been to use averages obtained yearly from the Current Population Survey. Given the smaller
 sample size of the CPS, results obtained by interpolating Census averages turn out to be more precise than results obtained
 from CPS averages.

 50 There is a wide variation in cell size across industries. For example, Petroleum Refining (SIC 291) and Engine and
 Turbines (SIC 351) have typically only one plant per cell, while Plastic Products (SIC 308) and Scientific Instruments (SIC
 381, 382) have seven plants per cell. Not all industries are present in all cities. For example, Office and Accounting Machines
 (SIC 357) plants are present in only 29 cities, while there are Electrical Machinery (SIC 361, 362, 364, 367, 369) plants in
 197 different cities.

 51 Hellerstein et al. (1999) show that plant-level wage equations represent the aggregation of individual-level wage
 equations over workers employed in a plant and hence should provide coefficients similar to the ones obtained from their
 individual-level counterparts.
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 number of hours worked. Data on workers are cell averages from the Census of Population. For
 example, "percentage female" is the fraction of women in the industry and city to which the plant
 belongs. The coefficients are roughly similar to the ones found in the literature based on individual-
 level regressions and the ones found in Hellerstein et al. (1999), based on a plant-level regression.
 For example, the coefficients on years of schooling are 0.078 (0.004) and 0.086 (0.006) for 1992 and
 1982, respectively. These coefficients are slightly smaller-probably because of measurement
 error-but not completely different from the standard estimates of the return to education obtained
 from worker-level data.52 Women and blacks are paid less, and older workers more. The coefficients
 on female, black, and age in 1992 are, respectively: -0.304 (0.029), -0.123 (0.056), 0.011 (0.001).
 The coefficients on female, black, and age in 1982 are, respectively: -0.449 (0.026), -0.026
 (0.058), 0.012 (0.001).

 I conclude that the matched worker-firm sample contains some measurement error, but can
 roughly reproduce standard individual-level wage equation results.

 PATENTS: To construct the two measures of economic distance based on patents, I use the
 NBER patent data set. I use all patents granted after 1970. For the index based on patent citations,
 I exclude self-citations. A major problem in linking patents to the Census of Manufacturers is that
 patents are not directly assigned industry codes. I use the concordance that links the International
 Patent Classification (IPC) system to the SIC system at the 4-digit SIC level developed by Brian
 Silverman. The concordance has been used by various scholars to assess the specific industries in
 which firms have technological strength (Brian S. Silverman, 1999), patenting activity through the
 industry life cycle (Anita McGahan and Silverman, 2001), and industry-specific effects in university-
 industry technology transfer (David Mowery and Arvids Ziedonis, 2001). The concordance and a
 detailed explanation on how it was constructed are available at www.rotman.utoronto.ca/silverman.
 In interpreting my results, it is important to keep in mind that the patent-SIC code is not one-to-one.
 Silverman's concordance assigns multiple SIC codes to each patent. I use the variable usefreq to
 select the SIC code that is most important for each patent, and ignore all the other SIC codes. This
 is likely to introduce some measurement error, which could bias downward the documented
 relationship between spillovers and the two measures of economic distance based on patents.

 52 One difference is that the 1992 estimates are usually found to be larger than the 1982 ones.
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 TABLE Al-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES,
 BY ECONOMIC DISTANCE

 (Distance Based on Input-Output Tables)

 Coefficient on college
 Distance Inputs in manufacturing share in specified
 (Rank) (billions of dollars) industry
 (1) (2) (3)

 Model A: 1-Digit Industries
 Manufacturing 1 841 0.802

 (0.192)
 Transportation, 2 122 0.488
 Communication, Utilities (0.213)
 Trade 3 119 0.705

 (0.335)
 Services 4 112 0.213

 (0.284)
 Mining 5 93 -0.004

 (0.042)
 Finance 6 29 0.048

 (0.154)
 Construction 7 14 0.273

 (0.339)

 Model B: 2-Digit Industries
 1-5 30.7 0.577

 (0.187)
 6-10 9.8 0.314

 (0.233)
 11-15 4.2 0.413

 (0.182)
 16-20 2.6 0.230

 (0.186)
 21-25 1.8 0.232

 (0.161)
 26-30 1.1 0.076

 (0.119)
 30+ 0.9 0.083

 (0.074)

 Notes: Model A: Column (1) reports the rank based on the value of inputs used in manufac-
 turing from the specified 1-digit industry. Column (2) reports the value of inputs used in
 manufacturing from the specified industry. Entries in column (3) are the 'k coefficients in
 equation (5), where k indexes 1-digit industries. (When k = Manufacturing, I calculate college
 share excluding the relevant 3-digit industry.) Figure 2 (top panel) plots column (3) against
 column (1). Model B: Column (1) reports the rank based on the value of inputs used in the
 relevant 2-digit industry from the specified 2-digit industry group. Column (2) reports the
 average value of inputs used in the relevant 2-digit industry from the specified 2-digit industry
 group. Entries in column (3) are the yk coefficients in equation (5), where k indexes 2-digit
 industries. For example, the entry in row 1 is the coefficient on college share in the five 2-digit
 industries that are closest to the relevant plant. Figure 2 (bottom panel) plots column (3)
 against column (1). Both models control for capital, hours worked by skilled and unskilled
 workers, establishment effects, industry x year, and state x year effects. There are 40,281
 plants in the sample, observed in both 1982 and 1992.
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 TABLE A2-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES,
 BY ECONOMIC DISTANCE

 (Distance Based on the Distribution of Patents Across Technological Groups)

 Uncentered Coefficient on college
 Distance correlation share in specified
 (Rank) coefficient industry

 P

 (1) (2) (3)

 Model A: 1-Digit Industries
 Manufacturing 1 1 0.802

 (0.192)
 Trade 2 0.618 0.705

 (0.335)
 Mining 3 0.577 -0.004

 (0.042)
 Construction 4 0.450 0.273

 (0.339)
 Transportation, Communication, 5 0.398 0.488
 Utilities (0.213)
 Finance 6 0.363 0.048

 (0.154)
 Services 7 0.345 0.213

 (0.284)

 Model B: 2-Digit Industries
 1-5 0.694 0.760

 (0.180)
 6-10 0.461 0.407

 (0.187)
 11-15 0.402 0.313

 (0.178)
 16-20 0.360 0.388

 (0.205)
 21-25 0.229 0.225

 (0.303)
 26-30 0.106 0.369

 (0.371)
 30+ 0.063 0.076

 (0.356)

 Notes: Model A: Column (1) reports the rank based on the uncentered correlation coefficient
 between manufacturing and the specified 1-digit industry. Column (2) reports the uncentered
 correlation coefficient between manufacturing and the specified 1-digit industry. The uncen-
 tered correlation coefficient is defined in equation (6). Entries in column (3) are the yk
 coefficients in equation (5), where k indexes 1-digit industries. (When k = Manufacturing, I
 calculate college share excluding the relevant 3-digit industry.) Figure 3 (top panel) plots
 column (3) against column (1). Model B: Column (1) reports the rank based on the uncentered
 correlation coefficient. Column (2) reports the uncentered correlation coefficient between the
 specified 2-digit industry group and the relevant 2-digit industry. Entries in column (3) are the
 yk coefficients in equation (5), where k indexes 2-digit industries. For example, the entry in
 row 1 is the coefficient on college share in the five 2-digit industries that are closest to the
 relevant plant. Figure 3 (bottom panel) plots column (3) against column (1). Both models
 control for capital, hours worked by skilled and unskilled workers, establishment effects,
 industry X year, and state X year effects. There are 40,281 plants in the sample, observed in
 both 1982 and 1992.
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 TABLE A3-THE SPILLOVER EFFECT OF COLLEGE SHARE IN 1-DIGIT AND 2-DIGIT INDUSTRIES,
 BY ECONOMIC DISTANCE

 (Distance Based on Patent Citations)

 Coefficient on college
 Distance Frequency of share in specified
 (Rank) patent citations industry
 (1) (2) (3)

 Model A: 1-Digit Industries
 Manufacturing 1 0.743 0.802

 (0.192)
 Services 2 0.134 0.213

 (0.284)
 Transportation, Communication, 3 0.064 0.488
 Utilities (0.213)
 Construction 4 0.029 0.273

 (0.339)
 Trade 5 0.016 0.705

 (0.335)
 Mining 6 0.010 -0.004

 (0.042)
 Finance 7 0.009 0.048

 (0.154)

 Model B: 2-Digit Industries
 1-5 0.091 0.337

 (0.122)
 6-10 0.043 0.249

 (0.180)
 11-15 0.032 0.213

 (0.208)
 16-20 0.020 -0.032

 (0.185)
 21-25 0.009 0.033

 (0.208)
 26-30 0.002 0.260

 (0.196)
 30+ 0.0002 0.071

 (0.269)

 Notes: Model A: Column (1) reports the rank based on the frequency of patent citations
 between the manufacturing and the relevant 1-digit industry. Column (2) reports the proba-
 bility that patents assigned to manufacturing firms cite patents assigned to firms in the
 specified industry. Entries in column (3) are the yk coefficients in equation (5), where k
 indexes 1-digit industries. (When k = Manufacturing, I calculate college share excluding the
 relevant 3-digit industry.) Figure 4 plots column (3) against column (1). Model B: Column (1)
 reports the rank based on the frequency of patent citations between the specified 2-digit
 industry group and the relevant 2-digit industry. Column (2) reports the frequency that the
 relevant 2-digit industry cites patents assigned to the specified group. Entries in column (3)
 are the yk coefficients in equation (5), where k indexes 2-digit industries. For example, the
 entry in row 1 is the coefficient on college share in the five 2-digit industries that are closest
 to the relevant plant. Figure 4 (bottom panel) plots column (3) against column (1). Both
 models control for capital, hours worked by skilled and unskilled workers, establishment
 effects, industry X year, and state X year effects. There are 40,281 plants in the sample,
 observed in both 1982 and 1992.
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